frac{\pi }{2} +2\pi n,~n\in\mathbb {Z} } , \pi +2\pi k, ~k\in\mathbb {Z} .
Пошаговое объяснение:
\sqrt{1+cosx} =sin x.
1+cosx
=sinx.
Возведем обе части уравнения в квадрат при условии
sinx\geq 0.sinx≥0.
\begin{gathered}1+cosx= sin^{2} x;\\1+cosx=1-cos^{2} x;\\cos^{2} x+cosx=0;\\cosx(cosx+1)=0 ;\\\left [ \begin{array}{lcl} {{cosx=0,} \\ {cosx=-1;}} \end{array} \right.\Leftrightarrow \left [ \begin{array}{lcl} {{x=\frac{\pi }{2} +\pi n,~n\in\mathbb {Z} } \\ {x=\pi +2\pi k, ~k\in\mathbb {Z}}} \end{array} \right.\end{gathered}
Учтем условие , что sinx\geq 0sinx≥0 . Тогда получим
\begin{gathered}\left [ \begin{array}{lcl} {{x=\frac{\pi }{2} +2\pi n,~n\in\mathbb {Z} } \\ {x=\pi +2\pi k, ~k\in\mathbb {Z}}} \end{array} \right.\end{gathered}
Запишем систему в виде расширенной матрицы:
3 2 3
4 1 1
2 3 -4
4
4
-5
Умножим 1-ю строку на (4). Умножим 2-ю строку на (-3). Добавим 2-ю строку к 1-й:
0 5 9
4 1 1
2 3 -4
4
4
-5
Умножим 3-ю строку на (-2). Добавим 3-ю строку к 2-й:
0 5 9
0 -5 9
2 3 -4
4
14
-5
Добавим 2-ю строку к 1-й:
0 0 18
0 -5 9
2 3 -4
18
14
-5
Теперь исходную систему можно записать так:
x3 = 18/18
x2 = [14 - (9x3)]/(-5)
x1 = [-5 - (3x2 - 4x3)]/2
Из 1-й строки выражаем x3
х3=18/18=1
Из 2-й строки выражаем x2
х2= (14-9*1) / -5= -1
Из 3-й строки выражаем x1
х1=2/2=1
Пошаговое объяснение: