Предложу решение, но мне кажется, есть что-то попроще, но не могу найти.
Рассуждаем так. Допустим до встречи 1 шёл со скоростью х км/ч, тогда второй шёл со скоростью (10-х) км/ч ( потому что км за 5 часов, значит их общая скорость была 10 км/ч)
За 5 часов х км, ему осталось идти (50-5х) км, тогда второму осталось идти 50 -(50-5х) = 5х (км) (т.к. после встречи им всё равно в сумме надо 50 км пройти.
их новые скорости: у первого:( х-1) (км/ч), у второго 1+(10-х) = 11-х (км/ч)
Теперь делим оставшиеся расстояния на скорости , получим время и зная, что первый пришёл раньше на 2 ч. составляем уравнение:
5х/(11-х) - (50-5х)/(х-1) = 2
5х/(11-х) - (50-5х)/ (х-1) - 2 = 0
приводим к общему знаменателю это (11-х)(х-1), и я буду писать только числитель:
5х(х-1) -(50-5х)(11-х) - 2(11-х)(х-1) = 0 ( т.к. дробь равно 0, если числитель равен 0, а знаменатель не равен 0)
5х^2-5x-550+55x+50x-5x^2-22x+22+2x^2-2x = 0
2x^2+76x-528 = 0
x^2+38x -264 = 0
D=2500
x=(-38-50)/2 -видно, что отриц. число, нам не подходит
или х= (-38+50)/2 = 6 (км/ч)
ответ: 6 км/ч
Поверхность прямоугольного параллелепипеда состоит из 6 граней, каждая из которых является прямоугольником. Противоположные грани прямоугольного параллелепипеда равны, поэтому площадь поверхности прямоугольного параллелепипеда вычисляют по формуле:
S = 2 · (a · b + a · c + b · c), где a, b, c - измерения прямоугольного параллелепипеда (длина, ширина и высота), S - площадь его поверхности.
Поэтому:
а) а = 3 см, b = 6 см, с = 7 см
S = 2 · (3 · 6 + 3 · 7 + 6 · 7) = 2 · (18 + 21 + 42) = 2 · 81 = 162 (cм²);
б) а = 11 м, b = 13 дм, с = 13 дм
S = 2 · (11 · 13 + 11 · 13 + 13 · 13) = 2 · (143 + 143 + 169) = 2 · 455 = 910 (дм²);
в) а = 40 дм, b = 9 дм, с= 6 дм
S = 2 · (40 · 9 + 40 · 6 + 9 · 6) = 2 · (360 + 240 + 54) = 2 · 654 = 1308 (дм²)