Вравнобедренном треугольнике медианы, проведенные к боковым сторонам, равны. доказательство: пусть abc - равнобедренный треугольник (ac = bc), ak и bl - его медианы. тогда треугольники akb и alb равны по второму признаку равенства треугольников. у них сторона ab общая, стороны al и bk равны как половины боковых сторон равнобедренного треугольника, а углы lab и kba равны как углы при основании равнобедренного треугольника. так как треугольники равны, их стороны ak и lb равны. но ak и lb - медианы равнобедренного треугольника, проведённые к его боковым сторонам.
0,03х+0,05х=16
0,08х=16.
х=16:0,08. х=200.
0,03·200+0,05·200= 6+10=16.