Четырехугольник, в котором провели диагональ разбивается на два треугольника с общей стороной. Необходимо, чтобы для длин сторон каждого из этих треугольников выполнялось неравенство треугольника (a+b>c, где a,b,c - длины сторон треугольника). Посмотрим, какие длины сторон могут быть у треугольника, если одна из его сторон равна 15. 15<11.5+10 - может быть 10, 11.5, 15 15<11.5+4 - может быть 4, 11.5, 15 15>11.5+2 - такого набора длин сторон быть не может 15>10+4 - такого набора длин сторон быть не может 15>10+2 - такого набора длин сторон быть не может
Рассмотрим первый вариант. На второй треугольник остаются длины 2, 4 и одна из длин сторон первого треугольника, а этого быть не может (2+4<10<11.5<15)
Теперь второй вариант: Остаются 2 и 10. 2+4<10 2+10>11.5 - единственный подходящий вариант. 2+10<15
Диагональ входит в оба треугольника, а значит ее длина 11.5
Четырехугольник, в котором провели диагональ разбивается на два треугольника с общей стороной. Необходимо, чтобы для длин сторон каждого из этих треугольников выполнялось неравенство треугольника (a+b>c, где a,b,c - длины сторон треугольника). Посмотрим, какие длины сторон могут быть у треугольника, если одна из его сторон равна 15. 15<11.5+10 - может быть 10, 11.5, 15 15<11.5+4 - может быть 4, 11.5, 15 15>11.5+2 - такого набора длин сторон быть не может 15>10+4 - такого набора длин сторон быть не может 15>10+2 - такого набора длин сторон быть не может
Рассмотрим первый вариант. На второй треугольник остаются длины 2, 4 и одна из длин сторон первого треугольника, а этого быть не может (2+4<10<11.5<15)
Теперь второй вариант: Остаются 2 и 10. 2+4<10 2+10>11.5 - единственный подходящий вариант. 2+10<15
Диагональ входит в оба треугольника, а значит ее длина 11.5
1. 509×603-999999/11+3982=220000
1) 509×603=306927
2) 999999/11=90909
3) 306927-90909=216018
4) 216018+3982=220000
2. (8535-1579):4+3456=5195
1) 8535-1579=6956
2) 6956:4=1739
3) 1739+3456=5195
3. (12789-8845):4+26922=27908
1) 12789-8845=3944
2) 3944:4=986
3) 986+26922=27908