М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Ruslan5278
Ruslan5278
23.01.2020 19:30 •  Математика

Найти четвертую часть от числа 840​

👇
Ответ:
BountyMars
BountyMars
23.01.2020

840:4•1=210.Число 840 делим на 4-ю часть и умножаем на 1 получаем 210.

4,6(90 оценок)
Ответ:
rufdiana
rufdiana
23.01.2020

840 \times \frac{1}{4} = \frac{840}{1} \times \frac{1}{4} = \frac{840 ^{210} \times 1}{1 \times 4 ^{1} } = \frac{210}{1} = 210

Чтоб найти дробь от числа, нужно умножить число на эту дробь.

4,6(56 оценок)
Открыть все ответы
Ответ:
Lenika2len
Lenika2len
23.01.2020
Как исследовать функцию f(x) = (x^2-9)/(x+3) на непрерывность в точке x=7?
Найти предел в этой точке
f(7)= (7²-9)/(7+3)=40/10=4
lim (x²-9)/(x+3)= lim (x²-9)/(x+3)= f(7)=4
x→7+0………… x→7-0
ФУНКЦИЯ В ТОЧКЕ х=7 НЕПРЕРЫВНА, т. к. односторонние пределы равны значению функции в точке!
Для души и сравнения х=-3
f(-3)= ((-3)²-9)/(-3+3)=0/0=не существует
lim (x²-9)/(x+3)= lim (х-3)(х+3)/(x+3) )= lim (х-3)=-6
x→-3+0………… x→-3+0………………. x→-3+0
lim (x²-9)/(x+3)= lim (х-3)=-6
x→-3-0……….. x→-3-0
х=-3 точка разрыва 1-го рода, разрыв устранимый, ( есть не устранимый разрыв, если пределы конечны, но не равны) т. к. односторонние пределы конечны и равны!
У данной функции нет точек разрыва 2- рода, например 1/х, при х=0, односторонние пределы равны ±∞,
Удачи!
4,6(32 оценок)
Ответ:
izeddin2002
izeddin2002
23.01.2020

ответ: утверждение доказано.

Пошаговое объяснение:

Возьмём сколь угодно малое положительное число ε. Мы докажем утверждение, если найдём такое число N, что при n>N будет выполняться неравенство /(n+b)/n-1/<ε. Данное неравенство равносильно двойному неравенству -ε<(n+b)/n-1<ε, или 1-ε<(n+b)/n<1+ε. Решением неравенства 1-ε<(n+b)/n является n>-b/ε, решением неравенства  (n+b)/n<1+ε является n>b/ε. И если взять большее из чисел -b/ε и b/ε (обозначим его через с), то в качестве числа N можно взять либо само число с (если оно натуральное), либо ближайшее к нему и меньшее его натуральное число. Тогда числа N+1, N+2будут заведомо удовлетворять неравенству. Таким образом, по числу ε найдено соответствующее ему число N, поэтому утверждение доказано.    

4,7(73 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ