3.Дима купил 7 одинаковых бокалов, а л и на 9 таких же бокалов. Мина истретил на 17000 сумов больше, чем Дима. Сколько стоит 1 бокал? Сколько денег истратил Дима? Сколько денег истратил Миша?
Трехзначных чисел всего (100 - 999) = 900 штук. Из них хоть одну четверку содержат: 1) A B 4 (Здесь A ≠ 0 и 4, а B ≠ 4). А - 8 вариантов, B - 9 вариантов. n1 = 8 * 9 = 72 варианта. 2) C 4 D (C ≠ 0 и 4, а D ≠ 4) C - 8 Вариантов, D - 9 вариантов. n2 = 8*9 = 72 варианта. 3) 4 X Y (X и Y ≠ 4) X и Y - 9 вариантов. n3=9*9 = 81 вариант. 4) 4 A 4 (A ≠ 4) - 9 вариантов 5) A 4 4 (A ≠ 0 и 4) - 8 вариантов 6) 4 4 A - 10 вариантов По правилу суммы общее число вариантов: n = 72 + 72 + 81 + 9 + 8 + 10 = 252 варианта. p = 252 / 900 = 0,28
(4+2х)(12-3х)>0 по правилам умножения можем записать так 4+2х>0 и 12-3х>0 2x>-4 12>3x x>-2 4>x x>-2 x<4 х є (-2; беск) х є (4; - беск) Решением данного неравенства будет являться пересечение двух найденных промежутков, то есть получим что х є (-2;4) ОБЯЗАТЕЛЬНО необходимо на ось Ох нанести точку -2 и 4 и штриховкой от -2 до + бесконечности показать решения первого неравенства .а потом штриховкой от 4 до - бесконечности показать решения второго неравенства. Отввет: (-2;4)
Из них хоть одну четверку содержат:
1) A B 4 (Здесь A ≠ 0 и 4, а B ≠ 4). А - 8 вариантов, B - 9 вариантов. n1 = 8 * 9 = 72 варианта.
2) C 4 D (C ≠ 0 и 4, а D ≠ 4) C - 8 Вариантов, D - 9 вариантов. n2 = 8*9 = 72 варианта.
3) 4 X Y (X и Y ≠ 4) X и Y - 9 вариантов. n3=9*9 = 81 вариант.
4) 4 A 4 (A ≠ 4) - 9 вариантов
5) A 4 4 (A ≠ 0 и 4) - 8 вариантов
6) 4 4 A - 10 вариантов
По правилу суммы общее число вариантов: n = 72 + 72 + 81 + 9 + 8 + 10 = 252 варианта.
p = 252 / 900 = 0,28