Стандартные размеры скворечника: 30-40 см высота, 14 см длина и ширина дна (но лучше 16×15см), 5 см диаметр летка.уменьшенный вариант скворечника – синичник. его высота – 25-30 см, размеры дна – 10-12 см (иногда до 14 см), а леток в диаметре составляет 3-3,5 см. такой домик подойдет для синиц, воробьев, горихвосток, воробьиных сычей, мухоловок-пеструшек.мухоловочник – это вариация синичника, от которого он отличается только высотой. она должна быть около 8-10 см, так как птицы мухоловки строят гнезда в более освещенных местах. здесь могут поселиться серые мухоловки, мухоловки-пеструшки, горихвостки.трясогузочник имеет обратную структуру. ширина и высота достигают 15 см, а вот глубина – 30. также необходимо позаботиться о том, чтобы перед входом был небольшой выступ, шириной в 10 см, так как трясогузки – “ходячие” птички, они не могут цепляться лапками.для короткопалой и обыкновенных пищух обычно строят треугольные гнездовья, которые имеют сквозное отверстие по бокам. так они смогут при нападении с одной стороны воспользоваться “выходом” с другой. высота конструкции – 22-26 см, ширина – 14-20 см, а летки примерно 3×6 см.полудуплянка – еще один “собрат” синичника. он имеет такие же размеры, но отличается леткой. такой домик предназначен для птиц, гнездящихся в естественных пустотах деревьях, а не в дуплах. поэтому летка должна быть большой. ширина летки равна ширине самого домика, а высота – в 2 раза меньше высоты домика.наиболее приближена к природному гнездовью дуплянка. она делается из части древесного ствола, из которого вырубается сердцевина. сверху и снизу постройка закрывается досками, а в стенке изготавливается леток необходимого размера.
В решении.
Пошаговое объяснение:
1) Басейн при одночасному включенні трьох труб може наповнитися за
4 год. Через одну першу трубу - за 10 год, а через одну другу – за 15 год.
За який час може наповнитися басейн через одну третю трубу?
1 - объём всего бассейна.
1/10 - часть бассейна, заполняемая первой трубой за час.
1/15 - часть бассейна, заполняемая второй трубой за час.
1/х - часть бассейна, заполняемая третьей трубой за час (время неизвестно).
По условию задачи уравнение:
1/10 + 1/15 + 1/х = 1/4
Общий знаменатель 60х, надписываем над числителями дополнительные множители, избавляемся от дроби:
6х*1 + 4х*1 + 60 = 15х*1
6х+4х+60=15х
10х-15х= -60
-5х = -60
х= -60/-5
х=12 (часов) - время заполнения бассейна одной третьей трубой.
2) Двом екскаваторам дано завдання вирити котлован. Працюючи
разом, вони можуть виконати це завдання за 20 днів. Але спочатку
24 дні працював один екскаватор, а потім роботу закінчив інший. За
який час було виконано завдання, якщо екскаватор, що працював
першим, може один вирити весь котлован за 36 днів?
1 - объём всего котлована.
1)Сначала нужно найти производительность второго экскаватора (часть котлована, которую он может выкопать за день):
1/36 - часть котлована, которую может выкопать первый экскаватор за день (его производительность по условию задачи).
1/х - часть котлована, которую может выкопать второй экскаватор за день (его производительность по условию задачи).
(1/36 + 1/х) - общая производительность двух экскаваторов.
По условию вместе могут выкопать котлован за 20 дней, уравнение:
(1/36 + 1/х) * 20 = 1
20/36 + 20/х = 1
Общий знаменатель 36х, надписываем над числителями дополнительные множители, избавляемся от дроби:
х*20 +36*20 = 36х*1
20х+720=36х
20х-36х= -720
-16х= -720
х= -720/-16
х=45 (дней) - за столько дней может выкопать котлован второй экскаватор.
А его производительность 1/45 - часть котлована, которую может выкопать второй экскаватор за день.
2)Найти общее количество дней, за которое был выкопан котлован.
По условию задачи сначала 24 дня работал первый экскаватор.
1/36 * 24 = 24/36 = 2/3 (котлована выкопал первый экскаватор).
1 - 2/3 = 1/3 (котлована докапывал второй экскаватор).
1/3 : 1/45 = 15 (дней) - работал второй экскаватор.
24 + 15 = 39 (дней) - общее количество дней, за которое два экскаватора выкопали котлован, работая по очереди.
Проверка:
1/36 * 24 + 1/45 * 15 = 2/3 + 1/3 = 1, верно.