б) Уравнение сторон АВ и ВС и их угловые коэффициенты: АВ : Х-Ха = У-Уа Хв-Ха Ув-Уа Получаем уравнение в общем виде: АВ: 4х - 8 = 3у - 6 или АВ: 4х - 3у - 2 = 0 Это же уравнение в виде у = кх + в: у = (4/3)х - (2/3). Угловой коэффициент к = 4/3.
ВС : Х-Хв = У-Ув Хс-Хв Ус-Ув ВС: 2х + у - 16 = 0. ВС: у = -2х + 16. Угловой коэффициент к = -2.
в) Внутренний угол В:Можно определить по теореме косинусов. Находим длину стороны ВС аналогично стороне АВ: BC = √((Хc-Хв)²+(Ус-Ув)²) = 2.236067977 cos В= (АВ²+ВС²-АС²) / (2*АВ*ВС) = 0.447214 Угол B = 1.107149 радиан = 63.43495 градусов.
a) Применим замену функции косинуса на тангенс:
cos(α) = 1/(+-√(1 + tg²(α)). Так как tg(α) = π/4, то знак корня положителен.
ответ: 2cos²(α) + 1 = (2/(1 + (π²/16))) + 1 = (48 + π²)/(16 + π²).
Если нужно цифровое значение, то это примерно 2,237.
б) Заменим cos²(x) = 1 - sin²(x).
Получаем sin²(x) - 2cos²(x) = sin²(x) - 2(1 - sin²(x)) = 3sin²(x) - 2.
Подставим значение sin(x) = -0,4 = -2/5.
Получаем 3*(4/25) - 2 = (12 - 50)25 = -38/25.
в) Числитель и знаменатель разделим на cos(α).
Получаем (6tg(α) - 2)/(tg(α) - 1) = (6*3 - 2)/(3 - 1) = 16/2 = 8.