Для решения задачи на безусловно потребуется признак делимости на 3 . Это значит , что если признак этот есть , значит число делится на 3. Признак делимости на 3 : Если сумма цифр данного числа делится без остатка на 3 , значит данное число делится на 3. 44 . 4+ 4 = 8 не делится на 3 444 . 4 + 4 + 4 = 12 делится на 3 без остатка 4444. 4 + 4 + 4 + 4 = 16 не делится на 3. 444444. 4 + 4 + 4 + 4 + 4 + 4 = 24 делится на 3 без остатка 555. 5 + 5 + 5 = 15 делится на 3 без остатка 5555. 5 + 5 + 5 + 5 = 20 не делится на 3 ответ 444 ;444444 ; 555. Признак делимости на 9 аналогичен признаку делимости на 3 , только сумма цифр должна делиться без остатка на 9. 81. 8 + 1 = 9 делится на 9 818, 8 + 1 + 8 = 17 не делится на 9 8181. 8 + 1 + 8 + 1 = 18 делится на 9 81818. 8 + 1 + 8 + 1 + 8 = 26 не делится на 9 818181. (8 + 1) + (8 + 1) + (8 + 1) = 9 * 3 делится на 9 , так как 1 из множителей 9 ответ : 81 ; 8181 ; 818181 .
Если вы что-то не поняли или нашли ошибку , то напишите автору .
Дополнение : Если вам дано огромное число Например : 98746282939 и нужно определить делится на 3 или на 9 Найдём сумму цифр = 67 Однако нам не очень хочется считать столбиком 67 / 3 Поэтому посчитаем сумму цифр 67 = 13 13 уже точно не делится на 3 . В этом примере мы увидели , как можно несколько раз применять один и тот же признак !
Решение: Скорость сближения велосипедистов равна: 15-10=5 (км/час) Время сближения: 2 : 5=0,4 (час) Время движения (t) у обоих велосипедистов одинаковое. Первый велосипедист проедет расстояние: S1=15*t Обозначим количество кругов у первого велосипедиста за (n1) При количестве кругов n1, расстояние пройденное первым велосипедистом составит: S1=5*0,4*n1=2n1 Приравняем оба выражения S1 15t=2n1 Второй велосипедист проедет расстояние равное: S2=10*t Обозначим количество кругов у второго велосипедиста за (n2) При количестве кругов n2, расстояние пройденное вторым велосипедистом составит: S2=5*0,4*n2=2n2 Приравняем оба выражения S2 10t=2n2 Получилось два уравнения: 15t=2n1 10t=2n2 Разделим первое уравнение на второе, получим: 15t/10t=2n1/2n2 15/10=n1/n2 Делаем вывод, что минимальное количество кругов до встречи равно: n1=15 n2=10 Из первого уравнения 15t=2n1 найдём значение (t) t=2n1/15 подставим в это выражение n1=15 t=2*15/15=2 (часа)
ответ: Первый велосипедист впервые догонит второго велосипедиста через 2 часа.
5х4=20(км)
38-20=18(км)
18:6=3(ч)
3+5=8(ч)
ответ:8 часов