В 3-мерных построениях малейшие ошибки искажают всю картину. В тексте одно (ответ 3,1623), на бумаге - другое. (ответ4,899). На бумаге, видимо, правильно. Как бы вы ни решали, наука одна и та же, и элементы вычисления те же. Но векторное исчисление может не использовать абсолютные координаты, и всё решается в относительных соотношениях, а если размеры объектов небольшие, мы не будем оперировать большими числами, которые могли бы возникнуть если центр координат сильно удален от объекта при расчете в абсолютных координатах. Векторные вычисления по сути есть вычисления матричные. Векторное произведение векторов дает вектор, перпендикулярных обоим заданным векторам. Это позволяет чисто формально выполнить умножение, не задумываясь об их относительном расположении. Я бы рекомендовала вначале хорошо усвоить все операции с матрицами 3х3 и 4х4, чтобы иметь надежный инструмент для вычислений, и запрограммировать это в программе Excel. Потом разобраться какими (несколькими) видами уравнений можно задавать векторы, прямые и плоскости, и как это задается в матричном виде. Как можно векторными и матричными операциями решать задачи о перпендикулярах и пересечениях прямых, прямой и плоскости, двух плоскостей. По сути плоскость задается обычными тремя точками или тремя точками на осях или двумя параллельными прямыми или векторами или пересекающимися прямыми. Все это можно сделать как на языке обычных систем уравнений, так и на языке матриц. Рекомендую найти в интернете старинные учебники Мусхелишвили, где всё систематически и подробно излагается. Сейчас, когда есть компьютеры, нет проблем за несколько секунд выполнить любую операцию, но интереснее всего поразмышлять над её смыслом, над тем, насколько это математически просто и красиво и в геометрическом и в матричном виде.
Qu'est-ce que l'amitié ? c'est une joie ! grande joie de le communiquer ! la joie de ce qu'il ya une personne proche de vous qui vous aidera conseil toujours écouter et soutenir toujours partout. lui seul peut faire entièrement confiance . seulement, il ne peut y avoir infraction à entendre des critiques . la véritable amitié , comme l'amour vrai , un phénomène plutôt rare . mais si elle est toujours là , alors il doit être protégé , comme la prunelle de l'œil . après tout , la perte d'un ami , nous perdons une partie d'eux-mêmes . et nous devons toujours nous rappeler qu'il est facile de perdre , mais incroyablement difficile à trouver. et plus on vieillit , plus il est difficile . amitié devrait croître comme fleur fragile et délicate . pensées " arrosage " sur l'autre, « fertilisent » les actes dignes . quel devrait être différent? vrai ! patient! genre ! oui , exactement ainsi ! après tout , c'est un ami ! chaque seront testés et le temps et les circonstances . et au fil des ans , une véritable amitié ne reçoit que plus forte. amitié ne peut pas être à sens unique , sinon non ce n'est pas l'amitié . tous totale , tous ensemble! toujours et partout ! amis ne peuvent pas être beaucoup , une, peut-être deux ou trois dans une vie. et le reste de dizaines et de centaines - c'est juste des amis , camarades et connaissances . oui , bon, gentil , merveilleux, mais ce n'est pas amis .
В тексте одно (ответ 3,1623), на бумаге - другое. (ответ4,899).
На бумаге, видимо, правильно.
Как бы вы ни решали, наука одна и та же, и элементы вычисления те же.
Но векторное исчисление может не использовать абсолютные координаты, и всё решается в относительных соотношениях, а если размеры объектов небольшие, мы не будем оперировать большими числами, которые могли бы возникнуть если центр координат сильно удален от объекта при расчете в абсолютных координатах.
Векторные вычисления по сути есть вычисления матричные. Векторное произведение векторов дает вектор, перпендикулярных обоим заданным векторам. Это позволяет чисто формально выполнить умножение, не задумываясь об их относительном расположении.
Я бы рекомендовала вначале хорошо усвоить все операции с матрицами 3х3 и 4х4, чтобы иметь надежный инструмент для вычислений, и запрограммировать это в программе Excel.
Потом разобраться какими (несколькими) видами уравнений можно задавать векторы, прямые и плоскости, и как это задается в матричном виде. Как можно векторными и матричными операциями решать задачи о перпендикулярах и пересечениях прямых, прямой и плоскости, двух плоскостей.
По сути плоскость задается обычными тремя точками или тремя точками на осях или двумя параллельными прямыми или векторами или пересекающимися прямыми. Все это можно сделать как на языке обычных систем уравнений, так и на языке матриц.
Рекомендую найти в интернете старинные учебники Мусхелишвили, где всё систематически и подробно излагается.
Сейчас, когда есть компьютеры, нет проблем за несколько секунд выполнить любую операцию, но интереснее всего поразмышлять над её смыслом, над тем, насколько это математически просто и красиво и в геометрическом и в матричном виде.