ответ:
пошаговое объяснение:
возьмем какую-либо вершину. просто выбрали любую. теперь "идем" по ребрам графа, не проходя по каждому ребру более 1 раза. поскольку циклов нет, рано или поздно мы "" в какую-нибудь вершину, у которой только 1 ребро, по которому мы в нее зашли. заметим, что тогда ее степень равна 1. возьмем и выкинем эту вершину и ее единственное ребро из графа. теперь кол-во вершин в графе - n-1, а ребер m-1 (m - кол-во ребер в изначальном графе). при этом связности мы не испортили, т.к. у нее было только одно ребро, которое мы выкинули с этой же вершиной!
проделаем ту же операцию. таким образом мы уменьшаем кол-во ребер и вершин каждым шагом на 1. рассмотрим граф, в котором осталось 2 вершины. одна из этих вершин имеет степень 1. значит и вторая тоже (при условии, что нет двойных ребер, но граф связен, поэтому их нет). уберем последнюю "единичную" вершину. у нас осталась одна вершина и ни одного ребра. а значит вершин изначально было на 1 больше, чем ребер. доказано.
p.s.: где достал(а)? какой город? )
подробнее - на -
ответ:
пошаговое объяснение:
srednyaya-liniya-trapeciiabcd — трапеция,
ad ∥ bc,
m — середина ab,
n — середина cd,
mn — средняя линия трапеции abcd.
свойства средней линии трапеции
1) средняя линия трапеции параллельна основаниям.
2) средняя линия трапеции равна полусумме оснований.
в трапеции abcd (ad ∥ bc)
\[1)mn\parallel ad\parallel bc; \]
\[2)mn = \frac{{ad + bc}}{2}
1.
основания трапеции относятся как 4: 7, а средняя линия равна 55 см. найти основания трапеции.
zadachi-na-srednyuyu-liniyu-trapeciiдано: abcd — трапеция,
ad ∥ bc, mn- средняя линия трапеции,
mn=55 см, bc: ad=4: 7.
найти: ad, bc.
решение:
пусть k — коэффициент пропорциональности.
тогда bc=4k см, ad=7k см.
по свойству средней линии трапеции,
\[mn = \frac{{ad + bc}}{2}
составляем уравнение:
{{4k + 7k}}{2} = 55\]
\[11k = 110\]
{k = 10} \]
отсюда bc=4∙10=40 см, ad=7∙10=70 см.
ответ: 40 см, 70 см.
2.
средняя линия трапеции равна 15 см, а одно из оснований на 6 см больше другого. найти основания трапеции.
srednyaya-liniya-trapecii-ravnaдано: abcd — трапеция,
ad ∥ bc, mn- средняя линия трапеции,
mn=15 см, ad на 6 см больше bc.
найти: ad, bc.
решение:
пусть bc=x см, тогда ad=(x+6) см.
так как средняя линия трапеции равна полусумме оснований,
\[mn = \frac{{ad + bc}}{2}
составим уравнение и решим его:
{{x + x + 6}}{2} = 15\]
\[2x + 6 = 30\]
{x = 12} \]
значит, bc=12 см, ad=12+6=18 см.