Если скорость течения реки составляет 1/7 часть от собственной скорости катера, значит, собственная скорость катера в 7 раз больше скорости течения реки. То есть,
Vс = Vт*7 = 1,5*7 = 10,5 км/ч,
где Vс – собственная скорость катера;
Vт – скорость течения реки.
Если катер движется против течения реки, из его собственной скорости следует вычесть скорость течения реки. Тогда, с учетом времени (2 ч 15 мин = 2+15/60 ч), проведенным катером в пути:
S = V*t = (Vc-Vт)*t1 = (10,5-1,5)*2,25 = 20,25 км,
где S – расстояние, которое пройдет катер, двигаясь против течения;
t1 – время, затраченное на движение катера против течения.
Если катер движется по течению реки, к его собственной скорости следует прибавить скорость течения реки. Тогда, с учетом времени (3 ч 25 мин = 3+25/60 ч), проведенным катером в пути:
S = V*t = (Vc+Vт)*t1 = (10,5+1,5)*(205/60) = 41 км.
ответ. 20,25 км против течения; 41 км по течению.
Дано неравенство: 6x² − x - 5 > 0.
Находим корни квадратного трёхчлена: 6x² − x - 5 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=(-1)^2-4*6*(-5)=1-4*6*(-5)=1-24*(-5)=1-(-24*5)=1-(-120)=1+120=121;
Дискриминант больше 0, уравнение имеет 2 корня:
x1=(√121-(-1))/(2*6)=(11-(-1))/(2*6)=(11+1)/(2*6)=12/(2*6)=12/12=1;
x2=(-√121-(-1))/(2*6)=(-11-(-1))/(2*6)=(-11+1)/(2*6)=-10/(2*6)=-10/12=-(5/6)≈-0.833333.
откуда x1 = 1 и x2 = -(5/6).
Раскладываем левую часть неравенства на множители: 6(x – 1) (x +(5/6)) > 0. Точки -5/6 и 1 разбивают ось X на три промежутка:
ОО⟶Х
-5/6 1
Точки -5/6 и 1 выколоты. Это связано с тем, что решаемое неравенство — строгое (так что x не может равняться -5/6 или 1). Далее определяем знаки левой части неравенства на каждом из промежутков
+ – +
ОО⟶Х
-5/6 1
Получаем: x < -5/6 или x > 1.
1)798y-16
2)1221x-14
3)4800mnpk
4)13200abcl