2) Функция не является ни чётной, ни нечётной. Докажем это:
;
≠ ± 1 при любых аргументах ;
≠ ± 1 ;
Найдём первую производную функции y(x) :
;
;
При x = 0, производная y'(x) – не определена, хотя сама функция определена при любых аргументах, так что функция непрерывна на всей числовой прямой, но непрерывно-дифференцируема за исключением ноля.
Убедимся в этом, вычислив предел около ноля слева и справа
;
;
3) Функция определена при любых x, поэтому точек разрыва нет.
Если приравнять функцию к нолю, получим:
;
;
Что возможно только при , т.е. при x = 0 ;
Итак, точка ( 0 ; 0 ) – принадлежит нашему графику.
4. Найдем асимптоты y(x).
Точек разрыва нет, значит, нет и вертикальных асимптот.
Посмотрим, что происходит с функцией y(x) при устремлении аргумента к ± :
;
;
;
Поскольку, , то:
;
Значит, уходя на отрицательную бесконечность аргумента y(x) и сама стремиться к бесконечности, а уходя на положительную бесконечно по аргументу y(x) стремится к нулю ;
Из этого следует, что при x>0 есть горизонтальная асимптота y = 0 .
Чтобы найти наклонную асимптоту, найдем предел первой производной на отрицательной бесконечности по аргументу:
;
– по доказанному в пределе самой функции .
;
А это означает, что наклонной асимптоты на отрицательной бесконечности нет. А на положительной – горизонтальная.
Ко́мпле́ксные[1][2] чи́сла — расширение множества вещественных чисел, обычно обозначается . Любое комплексное число может быть представлено как формальная сумма x + i, где x и y — вещественные числа, i — , то есть число, удовлетворяющее уравнению i2 = − 1. (В физике символ i часто заменяют на j)).
Комплексные числа образуюталгебраически замкнутое поле — это означает, что многочлен степени n с комплексными коэффициентами имеет ровно n комплексных корней, то есть вернаосновная теорема алгебры. Это одна из основных причин широкого применения комплексных чисел в математических исследованиях. Кроме того, применение комплексных чисел позволяет удобно и компактно сформулировать многие математические модели, применяемые в математической физике и в естественных науках — электротехнике, гидродинамике, квантовой механике, теории колебаний и многих других.
Исследовать функцию и построить график.
Решение:
1) Функция определена при любых аргументах.
D(f) ≡ R ≡
2) Функция не является ни чётной, ни нечётной. Докажем это:
Найдём первую производную функции y(x) :
При x = 0, производная y'(x) – не определена, хотя сама функция определена при любых аргументах, так что функция непрерывна на всей числовой прямой, но непрерывно-дифференцируема за исключением ноля.
Убедимся в этом, вычислив предел около ноля слева и справа
3) Функция определена при любых x, поэтому точек разрыва нет.
Если приравнять функцию к нолю, получим:
Что возможно только при
Итак, точка ( 0 ; 0 ) – принадлежит нашему графику.
4. Найдем асимптоты y(x).
Точек разрыва нет, значит, нет и вертикальных асимптот.
Посмотрим, что происходит с функцией y(x) при устремлении аргумента к ±
Поскольку,
Значит, уходя на отрицательную бесконечность аргумента y(x) и сама стремиться к бесконечности, а уходя на положительную бесконечно по аргументу y(x) стремится к нулю ;
Из этого следует, что при x>0 есть горизонтальная асимптота y = 0 .
Чтобы найти наклонную асимптоту, найдем предел первой производной на отрицательной бесконечности по аргументу:
А это означает, что наклонной асимптоты на отрицательной бесконечности нет. А на положительной – горизонтальная.