Вдвух корзинах 90 яблок. когда из первой корзины взяли 1/4 находящихся в ней яблок и переложили во вторую, то кол-во яблок в корзинах стало ровно. сколько яблок было в корзинах первоначально?
пусть в первой корзине было Х яблок, то во второй 90-Х. из первой корзины взяли 1/4 яблок , т.е. Х-1/4Х=3/4Х . и прибавили к другой, т.е. 90- Х + 1/4Х= 90-3/4Х. стало поровну, т.е. 3/4Х= 90- 3/4Х . 90=6/4 Х Х = 60 яблок (в первой корзине.)
Строишь матрицу по системе уравнений: (x, y, z написал для наглядности)..
...и вектор к нему(из результатов уравнения)
Формула для нахождения определителя методом треугольника: a₁₁*a₂₂*a₃₃ - a₁₁*a₃₂*a₂₃ - a₁₂*a₂₁*a₃₃ + a₁₂*a₃₁*a₂₃ + a₁₃*a₂₁*a₃₂ - a₁₃*a₃₁*a₂₂ (a - элемент матрицы, нижние индексы - позиция элемента в матрице).
Методом треугольника находишь определитель матрицы: ∆ = 3*(-1)*2 - 3*0*3 - 2*5*2 + 2*7*3 + 4*5*0 - 4*7*(-1) = 44 Чтобы решать дальше, определитель не должен быть равен нулю.
Заменяешь первый столбец матрицы(x), на вектор: Методом треугольника находишь определитель матрицы: ∆x = 1*(-1)*2 - 1*0*3 - 2*5*2 + 2*7*3 + (-1)*5*0 - (-1)*7*(-1) = 13
Заменяешь второй столбец матрицы(y), на вектор: Методом треугольника находишь определитель матрицы: ∆y = 3*2*2 - 3*0*(-1) - 2*1*2 + 2*7*(-1) + 4*1*0 - 4*7*2 = -62
Заменяешь третий столбец матрицы(z), на вектор: Методом треугольника находишь определитель матрицы: ∆z = 3*(-1)*(-1) - 3*2*3 - 2*5*(-1) + 2*1*3 + 4*5*2 - 4*1*(-1) = 45
Когда все определители найдены по очереди делишь определители ∆x, ∆y, ∆z на ∆(определитель первой матрицы). x = y = z =
Строишь матрицу по системе уравнений: (x, y, z написал для наглядности)..
...и вектор к нему(из результатов уравнения)
Формула для нахождения определителя методом треугольника: a₁₁*a₂₂*a₃₃ - a₁₁*a₃₂*a₂₃ - a₁₂*a₂₁*a₃₃ + a₁₂*a₃₁*a₂₃ + a₁₃*a₂₁*a₃₂ - a₁₃*a₃₁*a₂₂ (a - элемент матрицы, нижние индексы - позиция элемента в матрице).
Методом треугольника находишь определитель матрицы: ∆ = 3*(-1)*2 - 3*0*3 - 2*5*2 + 2*7*3 + 4*5*0 - 4*7*(-1) = 44 Чтобы решать дальше, определитель не должен быть равен нулю.
Заменяешь первый столбец матрицы(x), на вектор: Методом треугольника находишь определитель матрицы: ∆x = 1*(-1)*2 - 1*0*3 - 2*5*2 + 2*7*3 + (-1)*5*0 - (-1)*7*(-1) = 13
Заменяешь второй столбец матрицы(y), на вектор: Методом треугольника находишь определитель матрицы: ∆y = 3*2*2 - 3*0*(-1) - 2*1*2 + 2*7*(-1) + 4*1*0 - 4*7*2 = -62
Заменяешь третий столбец матрицы(z), на вектор: Методом треугольника находишь определитель матрицы: ∆z = 3*(-1)*(-1) - 3*2*3 - 2*5*(-1) + 2*1*3 + 4*5*2 - 4*1*(-1) = 45
Когда все определители найдены по очереди делишь определители ∆x, ∆y, ∆z на ∆(определитель первой матрицы). x = y = z =
пусть в первой корзине было Х яблок, то во второй 90-Х.
из первой корзины взяли 1/4 яблок , т.е. Х-1/4Х=3/4Х . и прибавили к другой, т.е. 90- Х + 1/4Х= 90-3/4Х. стало поровну, т.е. 3/4Х= 90- 3/4Х .
90=6/4 Х
Х = 60 яблок (в первой корзине.)
90-60 =30 во второй