цена кол-во стоимость лук а тнг 2 кг картофель b тнг 5 кг яблоки 2 кг = лук + картофель 1) 2*а = 2а (тнг) стоимость 2 кг лука 2) b*5 = 5b (тнг) стоимость 5 кг картофеля 3) 2а+5b - стоимость лука и картофеля, равная стоимости 2 кг яблок 4) (2a+5b): 2 = (5a+5b) / 2 - цена 1 кг яблок
Ясно, что при n=2k система имеет решение a=3^k, b=0. Покажем, что других решений нет.
Пусть ни одно из чисел a и b не делится на 3. Покажем, что если число имеет остаток 1 или 2 при делении на 3, то квадрат этого числа имеет остаток 1 при делении на 3. Действительно, пусть a=3k+1, тогда a²=9k²+6k+1, если a=3k+2, то a²=9k²+18k+4, в обоих случаях остаток равен 1. Но сумма двух чисел с остатком 1 при делении на 3 не может нацело делиться на 3, получили противоречие.
Теперь рассмотрим случай, когда хотя бы одно из чисел a и b делится на 3. Если только одно число делится на 3, то сумма квадратов не будет делиться на 3, то есть, такой вариант невозможен. Остается случай, когда на 3 делятся оба числа. Пусть , где p и q - натуральные числа, не делящиеся на 3. Ясно, что x<n, y<n. Если x=y, то, разделив обе части на , получим уравнение . Поскольку числа p и q не делятся на 3, а величина n-x больше 0, это уравнение корней не имеет. Наконец, рассмотрим случай, когда x≠y, в силу симметрии можно считать, что x<y. Разделив уравнение на , имеем . Первое слагаемое не делится на 3, второе и третье делятся, получили противоречие.
Таким образом, уравнение имеет решение лишь при четных n. Следовательно, оно имеет 515 решений, меньших 1031.