1) 2^8+4^5-8^2=2^8+(2^2)^5-(2^3)^2=2^8+2^10-2^6=2^6*(2^2+2^4-1)=2^6*(4+16-1)=2^6*19=2^5*(2*19)=2^5*38 это выражение делится на 38
(2^5*38)/38=2^5=32 что требовалось доказать
2) 3^11+9^6+27^3=3^11+(3^2)^6+(3^3)^3=3^11+3^12+3^9=3^9*(3^2+3^3+1)=3^9*(9+27+1)=3^9*37=3^8*(3*37)=3^8*111 это выражение делится на 111
(3^8*111)/111=3^8 что требовалось доказать
3) a=9^7+9^6+9^5=(3^2)^7+(3^2)^6+(3^2)^5=3^14+3^12+3^10=3^10*(3^4+3^2+1)=3^10*(81+9+1)=3^10*91.
b=3^10-3^9+3^8=3^8*(3^2-3+1)=3^8*(9-3+1)=3^8*7
(3^10*91)/(3^8*7)=3^2*91/7=9*13=117 что и требовалось доказать а делится на bответ:
пошаговое объяснение:
150 100 – 697 · 208 + 182 620 : 397 = 5 584
697 · 208=144 976
182 620 : 397=460
150 100-144 976=5 124
5 124+460=5 584
( 41 · 134 + 11 978 ) : ( 1 211 – 899 ) = 56
41 · 134=5 494
5 494+11 978 =17 472
1 211 – 899 =312
17 472: 312=56
271 100 – 790 · 306 + 5 711 540 : 809 = 36 420
790 · 306=241 740
5 711 540 : 809 =7 060
271 100-241 740=29 360
29 360+7 060=36 420
7 091 + 19 663 – ( 243 916 + 75 446 ) : 527 · 37 = 4 332
243 916 + 75 446=319 362
319 362 : 527=606
606 · 37=22 422
7 091 + 19 663=26 754
26 754-22 422=4 332
700 200 – 615 880 : 346 · 307 + 46 260 = 200 000
615 880 : 346= 1 780
1 780· 307=546 460
700 200 – 546 460=153 740
153 740+ 46 260 = 200 000
178 · 406 + 37 832 – 558 182 : 397 = 108 694
178 · 406=72 268
558 182 : 397=1 406
72 268 + 37 832=110 100
110 100-1 406=108 694
369 · 304 + 961 620 : ( 1 357 – 840 ) =114 036
( 1 357 – 840) =517
369 · 304 =112 176
961 620 : 517=1 860
112 176+1 860=114 036
Пошаговое объяснение:
2,7 / 0,09 = 30
4,2 / 0,21 = 20
5,72 / 0,052 = 110
60 / 0,25 = 240
18 / 0,005 = 3600
12,6 / 0,042 = 300
3,24 / 0,18 = 18
62,5 / 0,0025 = 25000
0,0869 / 0,011 = 7,9