Какой класс,1,2,3,4,5,,6,7,8,9,10 если скажешь какой класс то решу ету задачу
Число делится на 11, если сумма его двузначных граней делится на 11 (разбиение числа на грани начинается с его конца)
1 | 35 | 7* | 67 | 4* | 23
1 + 35 + 7 + 67 + 4 + 23 = 137
143 - ближайшее число, которое делится на 11
143 - 137 = 6 - недостающая сумма двух звёздочек
6 = 0 + 6
13 570 674 623 : 11 = 1 233 697 693
13 576 674 023 : 11 = 1 234 243 093
6 = 1 + 5
13 571 674 523 : 11 = 1 233 788 593
13 575 674 123 : 11 = 1 234 152 193
6 = 2 + 4
13 572 674 423 : 11 = 1 233 879 493
13 574 674 223 : 11 = 1 234 061 293
6 = 3 + 3
13 573 674 323 : 11 = 1 233 970 393
Нам надо просуммировать 4 вероятности: что будут работать 9, 10, 11, и 12 машин, то есть P(9), P(10), P(11), P(12). Это решается через формулу Бернулли:
нам придется считать сочетания из N по М - С (из N по М) , и возводить вероятности в степени. Чтобы найти вероятность, что будет задействовано M машин, нам нужна формула:
P(M) =С (из 12 по M)*0,8^M*0,2^(12-M). То есть мы умножаем сочетание на вероятности, возведенные в степени, равные нужному нам событию. Нам надо, чтобы событие произошло M раз, а вероятность его - 0,8, поэтому и 0,8^M. С другой стороны, нам нужно, чтобы противоположное событие произошло 12-M раз, а его вероятность равно 1-0,8=0,2, поэтому 0,2^(12-M). Сочетания считаются по правилам комбинаторики: С (из N по M) = N!/(M!*(N-M)!
P(9) =С (из 12 по 9)*0,8^9*0,2^3 = 12!/(9!*3!)*0,134217728*0,008=0,23622320128
аналогично:
P(M) =С (из 12 по 10)*0,8^10*0,2^2 =12!/(10!*2!)*0,1073741824*0,04=0,283467841536
P(M) =С (из 12 по 11)*0,8^M*0,2^1 = 12!/(11!*1!)*0,08589934592*0,2 = 0,206158430208
P(M) =С (из 12 по 12)*0,8^M*0,2^0 = 12!/(12!*0!)*0,068719476736 = 0,068719476736
Суммируем все это, получается 0,79456894976, или 79,457%
Пошаговое объяснение:
какое число в конце
ыэцэццээцэцэцэц