Для того чтобы найти экстремум функции найдем сперва ее производную Теперь приравняем производную к нолю и решим полученное уравнение 6x(x-1)=0 6х=0 х-1=0 х=0 х=1 Нанесем полученные точки на ось Ох и определим знак функции. ОБЯЗАТЕЛЬНО НАРИСОВАТЬ. таким образом получим три промежутка 1. (-беск; 0): у(-2)=6*(-2)(-2-1)=-12*(-3)=36, >0 2. [0;1]: y(0,5)=6*0,5*(0,5-1)=3*(-0,5)-1,5 <0 3.(1;беск): y(2) 6*2(2-1)=12*(1)=12, >0 И так видим что при прохождении точек х=0 и х=1 функции меняет свой знак следовательно эти точки и являются экстремумами функции ответ:х=0 и х=1
Расстояние от вершины треугольника до противолежащей стороны (высота) находят как произведение боковой стороны на синус прилежащего к стороне и основанию угла О - вершина трех треугольников здесь и дальше подразумеваем что высота опущена из точки О высота треугольника АВО h1 = ОВ*sin(угол АВО) высота треугольника ВСО h2 = ОВ*sin(угол СВО) так как ВО - биссектриса угол АВО = угол СВО значит h2 = ОВ*sin(АВО) = h1 заметим, что h2 = CО *sin(угол ВСО) высота треугольника СДО h3 = СО*sin(угол ДСО) так как СО - биссектриса угол ВСО = угол ДСО значит h3 = СО*sin(угол ВСО) = h2 мы получили h1 = h2 = h3 - доказано !
Теперь приравняем производную к нолю и решим полученное уравнение
6x(x-1)=0
6х=0 х-1=0
х=0 х=1
Нанесем полученные точки на ось Ох и определим знак функции.
ОБЯЗАТЕЛЬНО НАРИСОВАТЬ. таким образом получим три промежутка
1. (-беск; 0): у(-2)=6*(-2)(-2-1)=-12*(-3)=36, >0
2. [0;1]: y(0,5)=6*0,5*(0,5-1)=3*(-0,5)-1,5 <0
3.(1;беск): y(2) 6*2(2-1)=12*(1)=12, >0
И так видим что при прохождении точек х=0 и х=1 функции меняет свой знак следовательно эти точки и являются экстремумами функции
ответ:х=0 и х=1