1) 2^8+4^5-8^2=2^8+(2^2)^5-(2^3)^2=2^8+2^10-2^6=2^6*(2^2+2^4-1)=2^6*(4+16-1)=2^6*19=2^5*(2*19)=2^5*38 это выражение делится на 38
(2^5*38)/38=2^5=32 что требовалось доказать
2) 3^11+9^6+27^3=3^11+(3^2)^6+(3^3)^3=3^11+3^12+3^9=3^9*(3^2+3^3+1)=3^9*(9+27+1)=3^9*37=3^8*(3*37)=3^8*111 это выражение делится на 111
(3^8*111)/111=3^8 что требовалось доказать
3) a=9^7+9^6+9^5=(3^2)^7+(3^2)^6+(3^2)^5=3^14+3^12+3^10=3^10*(3^4+3^2+1)=3^10*(81+9+1)=3^10*91.
b=3^10-3^9+3^8=3^8*(3^2-3+1)=3^8*(9-3+1)=3^8*7
(3^10*91)/(3^8*7)=3^2*91/7=9*13=117 что и требовалось доказать а делится на b
Значит, мы можем переставить все числа, так,
чтобы оказалось, что
Введём новые переменные
И будем искать такие комбинации чтобы
и
Начнём с первого требования, оно эквивалентно утверждению, что:
;
;
При правая часть отрицательная, а левая положительна, что не возможно.
Значит, ;
Теперь подставим вместо его значение и будем искать такие комбинации чтобы:
– теперь всегда будет выполняться с
и
Проанализируем второе требование, оно эквивалентно утверждению, что:
;
;
При правая часть отрицательная, а левая положительна, что не возможно.
При но это не подходит по условию.
Значит, ;
Теперь подставим вместо его значение и будем искать такие комбинации чтобы:
– теперь всегда будет выполняться с
– теперь всегда будет выполняться с
Проанализируем последнее требование, оно эквивалентно утверждению, что:
;
;
;
;
;
Сумма всей комбинации – это:
максимум которой достигается при минимальном значении
в знаменателе дроби т.е. при
Тогда сумма всей комбинации
;
О т в в е т : 59 .