Количество учеников в одном классе школы больше на 15 человек чем во втором классе. Количество второго класса увеличилось на 20%. А в первом уменьшилось на 70%. В итоге в классы количество учеников стала равной. Сколько учеников в каждом классе?
Пошаговое объяснение: №1 Две плоскости могу: 1) пересекаться, 2) совпадать, 3) быть параллельными. Две плоскости называют пересекающимися, если они не совпадают, и у них есть общие точки. В случае, когда две плоскости пересекаются, пересечением этих плоскостей является прямая линия.
Две плоскости называют параллельными, если они не имеют общих точек. №2 Аксиомы расстояния: 1) d(x,y)=0, если х=у , где d(x,y) - расстояние между элементами х и у; 2) d (x,y) = d(y,x) 3) d(x,y)≤d(x,z)+d(z,y) неравенство треугольника, где х,у, z- любые элементы метрического пространства №3 Пусть АВСД-ромб, CN⊥α, ДК⊥α, тогда АN- проекция большей диагонали, AN=21, ВК=проекция меньшей диагонали, ВК=16. Треугольники АСN , и ВДК -прямоугольные по теореме Пифагора диагональ АС²= 21²+12²=441+144=585, АС= √585 = √65·9 =3√65; ВД²= 16²+ 12²=400, ВД=√400=20. Тогда сторона ромба АВ²= (20/2)²+ (3√65/2)²=100+(585/4) =985/4 ⇒АВ=√(985/4)=√985 / 2 №4 Пусть АВ ∩ α=О, АМ⊥α, ВК⊥α, тогда АО = х см, ОВ=(30 - х) см , АМ=9, ВК=16; треугольники АМО и ВКО подобны ⇒х/9 =(30-х)16 ⇒ 25х=270,⇒х=10,8. Из ΔАМО⇒ Sinα= АМ/АО= 9/10,8=90/108=5/6
Шахматов алексей александрович [5 (17). 6. 1864, нарва, — 16. 8. 1920, петроград] , языковед, исследователь летописания, академик петербургской ан (1894). окончил московский университет (1887), приват-доцент там же (1890). профессор петербургского университета (с 1910), председатель отделения языка и словесности ан (1906 — 1920). ш. — основоположник изучения языка; выявил древние койне — общие устные языки, отличные от живых говоров изучал проблему образования народности и славянского этногенеза, вопросы прародины и праязыка. проследил летописания 11—16 вв. в области летописания впервые применил сравнительно- метод. заложил основы текстологического изучения летописей и текстологии как науки. широко использовав диалектные данные для интерпретации письменных источников, ш. обратил внимание на древние орфографические системы, мешавшие отражению на письме особенностей живой речи. изучал современные олонецкие, калужские и рязанские говоры, создал программы изучения говоров, обрабатывал и печатал многочисленные ответы на них. исследовал славянскую акцентологию, вопросы сравнительной фонетики и грамматики славянских языков, древние и современные индоевропейские языки, финские и мордовский языки; разработал морфологию языка. его учение о грамматических формах слов, частях речи, словосочетаниях, типах предложения, соотношении морфологии и синтаксиса — важный вклад в теоретическое языкознание. учёные отодвинули завесу непознанного, внеся свою лепту в эволюцию научной мысли во всем мире. многие великие учёные трудились за рубежом в научно-исследовательских учреждениях с мировым именем. наши земляки сотрудничали со многими научными умами. открытия учёных стали катализатором развития технологии и знания во всем мире, а многие революционные идеи и открытия в мире создавались на научных достижений известных учёных.
Пошаговое объяснение: №1 Две плоскости могу: 1) пересекаться, 2) совпадать, 3) быть параллельными. Две плоскости называют пересекающимися, если они не совпадают, и у них есть общие точки. В случае, когда две плоскости пересекаются, пересечением этих плоскостей является прямая линия.
Две плоскости называют параллельными, если они не имеют общих точек. №2 Аксиомы расстояния: 1) d(x,y)=0, если х=у , где d(x,y) - расстояние между элементами х и у; 2) d (x,y) = d(y,x) 3) d(x,y)≤d(x,z)+d(z,y) неравенство треугольника, где х,у, z- любые элементы метрического пространства №3 Пусть АВСД-ромб, CN⊥α, ДК⊥α, тогда АN- проекция большей диагонали, AN=21, ВК=проекция меньшей диагонали, ВК=16. Треугольники АСN , и ВДК -прямоугольные по теореме Пифагора диагональ АС²= 21²+12²=441+144=585, АС= √585 = √65·9 =3√65; ВД²= 16²+ 12²=400, ВД=√400=20. Тогда сторона ромба АВ²= (20/2)²+ (3√65/2)²=100+(585/4) =985/4 ⇒АВ=√(985/4)=√985 / 2 №4 Пусть АВ ∩ α=О, АМ⊥α, ВК⊥α, тогда АО = х см, ОВ=(30 - х) см , АМ=9, ВК=16; треугольники АМО и ВКО подобны ⇒х/9 =(30-х)16 ⇒ 25х=270,⇒х=10,8. Из ΔАМО⇒ Sinα= АМ/АО= 9/10,8=90/108=5/6