Y=(x²-1)/(x+2) D(y)∈(-∞;-2) U (-2;∞) y(-x)=(x²-1)/(-x+2) ни четная,ни нечетная Точки пересечения с осями ((1;0);(-1;0);(0;-1/2) y`=(2x(x+2)-1(x²-1))/(x+2)²=(2x²+4x-x²+1)/(x+2)²=(x²+4x+1)/(x+2)²=0 x²+4x+1=0 D=16-4=12 x1=(-4-2√3)/2=-2-√3 U x2=-2+√3 + _ + (-2-√3)(-2+√3) возр max убыв min возр ymax=-(6+4√3)/√3 ymin=(6-4√3)/√3 y``=((2x+4)(x+2)²-2(x+2)(x²+4x+1))/(x+2)^4= =(2x+4)(x²+4x+4-x²-4x-1)/(x+2)^4=(2x+4)*3/(x+2)^4=6/(x+2)³=0 x=-2 точка мнимая,значит точек перегиба нет - + (-2) выпукла вверх вогнута вниз
1) 120 = 2³ · 3 · 5; 60 = 2² · 3 · 5
НОК (120 и 60) = 2³ · 3 · 5 = 120 - наименьшее общее кратное
НОД (120 и 60) = 2² · 3 · 5 = 60 - наибольший общий делитель
2) 30 = 2 · 3 · 5; 75 = 3 · 5²
НОК (30 и 75) = 2 · 3 · 5² = 150 - наименьшее общее кратное
НОД (30 и 75) = 3 · 5 = 15 - наибольший общий делитель
3) 6 = 2 · 3; 72 = 2³ · 3²
НОК (6 и 72) = 2³ · 3² = 72 - наименьшее общее кратное
НОД (6 и 72) = 2 · 3 = 6 - наибольший общий делитель
4) 16 = 2⁴; 48 = 2⁴ · 3
НОК (16 и 48) = 2⁴ · 3 = 48 - наименьшее общее кратное
НОД (16 и 48) = 2⁴ = 16 - наибольший общий делитель
5) 121 = 11²; 99 = 3² · 11
НОК (121 и 99) = 3² · 11² = 1089 - наименьшее общее кратное
НОД (121 и 99) = 11 - наибольший общий делитель
6) 17 - простое число, поэтому
НОК (17 и 15) = 17 · 15 = 255 - наименьшее общее кратное
НОД (17 и 15) = 1 - наибольший общий делитель