Ваша задача равносильна неравенству: (x^2-3*x+2)/(x3-5*x^2+4*x) < 0,
Разложим на множители:
((х-1)*(х-2))/(x*(x-1)*(x-4)) < 0.
Определяем ОДЗ: х ≠ 0 U x ≠ 1 U x ≠ 4. (При решении методом интервалов, эти точки будут "выколотыми", т. к в этих точках функция имеет разрыв.
Ни один сомножитель в знаменателе не равен нулю. Поэтому неравенство не изменится, если мы умножим его на x^2*(x-1)^2*(x-4)^2, тогда получается:
х*(х-1)^2*(х-2)*(х-4) < 0.
Отмечаем на числовой оси точки х=0, х=1, х=2, х=4, не забываем, что точки х=0, х=1 и х=4 - выколоты. Рисуем "змейку". При х > 4, значение функции положительно, в интервале (2; 4) = отрицательно, в интервале (1; 2) - положительно. Точка х=1 входит дважды, поэтому знак "змейки" не меняем, т. е в интервале (0; 1) значение функции остается положительным, левее точки х=0 - значение функции отрицательно.
Задача на нахождение расстояние, скорости, времени Дано: S₁=25 км v₁=1/25 км/мин.=0,04 км/мин. =0,04×60 км/час=2,4 км/ч S₂=9 км v₂=3 км/ч Найти: Путь при котором t(в пути) минимальное - ?
Решение S(расстояние)=v(скорость)×t(время) Отсюда, t=S÷v 1) t₁=S₁÷v₁=25÷2,4=25÷24/10=25÷12/5=25×5/12=125/12=10 часов 5/12 мин.=10 часов 5×60/12 мин. = 10 часов 25 мин. 2) t₂=S₂÷v₂=9÷3=3 (часа) - попадут туристы в посёлок, проплыв путь на лодке. 10 часов 25 мин. > 3 часов ответ: чтобы быстрее попасть в посёлок, туристам следует плыть на плоту.
Ваша задача равносильна неравенству: (x^2-3*x+2)/(x3-5*x^2+4*x) < 0,
Разложим на множители:
((х-1)*(х-2))/(x*(x-1)*(x-4)) < 0.
Определяем ОДЗ: х ≠ 0 U x ≠ 1 U x ≠ 4. (При решении методом интервалов, эти точки будут "выколотыми", т. к в этих точках функция имеет разрыв.
Ни один сомножитель в знаменателе не равен нулю. Поэтому неравенство не изменится, если мы умножим его на x^2*(x-1)^2*(x-4)^2, тогда получается:
х*(х-1)^2*(х-2)*(х-4) < 0.
Отмечаем на числовой оси точки х=0, х=1, х=2, х=4, не забываем, что точки х=0, х=1 и х=4 - выколоты. Рисуем "змейку". При х > 4, значение функции положительно, в интервале (2; 4) = отрицательно, в интервале (1; 2) - положительно. Точка х=1 входит дважды, поэтому знак "змейки" не меняем, т. е в интервале (0; 1) значение функции остается положительным, левее точки х=0 - значение функции отрицательно.
Решение: (-∞; 0) U (2; 4).