Систе́ма координа́т — комплекс определений, реализующий метод координат, то есть определять положение и перемещение точки или тела с чисел или других символов. Совокупность чисел, определяющих положение конкретной точки, называется координатами этой точки.
В математике координаты — совокупность чисел, сопоставленных точкам многообразия в некоторой карте определённого атласа.
В элементарной геометрии координаты — величины, определяющие положение точки на плоскости и в На плоскости положение точки чаще всего определяется расстояниями от двух прямых (координатных осей), пересекающихся в одной точке (начале координат) под прямым углом; одна из координат называется ординатой, а другая — абсциссой. В по системе Декарта положение точки определяется расстояниями от трёх плоскостей координат, пересекающихся в одной точке под прямыми углами друг к другу, или сферическими координатами, где начало координат находится в центре сферы.
В географии координаты выбираются как (приближённо) сферическая система координат — широта, долгота и высота над известным общим уровнем (например, океана). См. Географические координаты.
В астрономии небесные координаты — упорядоченная пара угловых величин (например, прямое восхождение и склонение), с которых определяют положение светил и вс точек на небесной сфере. В астрономии употребляют различные системы небесных координат. Каждая из них по существу представляет собой сферическую систему координат (без радиальной координаты) с соответствующим образом выбранной фундаментальной плоскостью и началом отсчёта. В зависимости от выбора фундаментальной плоскости система небесных координат называется горизонтальной (плоскость горизонта), экваториальной (плоскость экватора), эклиптической (плоскость эклиптики) или галактической (галактическая плоскость).
Наиболее используемая система координат — прямоугольная система координат (также известная как декартова система координат).
Координаты на плоскости и в можно вводить бесконечным числом разных Решая ту или иную математическую или физическую задачу методом координат, можно использовать различные координатные системы, выбирая ту из них, в которой задача решается проще или удобнее в данном конкретном случае. Известным обобщением системы координат являются системы отсчёта и
Задача 1. 1) 3/5 * 1/3 = 1/5 - часть мальчиков, которые играют в футбол (сократили 3 в числителе одной дроби и 3 в знаменателе другой) ответ: 1/5 часть всех детей лагеря играет в футбол. Проверка. В летнем лагере 30 детей (целое). 1) 30 * 3/5 = 30 : 5 * 3 = 18 детей - мальчики (часть целого) 2) 18 * 1/3 = 18 : 3 = 6 мальчиков играют в футбол (часть мальчиков) 3) 6/30 = 1/5 - часть детей лагеря, которые играют в футбол (дробь 6/30 сократили на 6)
Задача 2. Примем весь путь за единицу (целое) 1) 1 - 7/20 = 20/20 - 7/20 = 13/20 - оставшаяся часть пути; 2) 13/20 * 8/13 = 8/20 - часть пути, которую проделали путешественники во второй день; 3) 1 - (7/20 + 8/20) = 1 - 15/20 = 5/20 - часть пути, которую проделали путешественники в третий день; 4) 7/20 - 5/20 = 2/20 = 1/10 - часть пути, равная 36 км Находим целое по его части: 36 * 10 = 360 км - расстояние между городами. ответ: 360 км. Проверяем: 1) 360 * 7/20 = 360 : 20 * 7 = 126 км - в первый день; 2) 8/13 * (360 - 126) = 8/13 * 234 = 234 : 13 * 8 = 144 км - во второй день; 3) 360 * 5/20 = 360 : 20 * 5 = 90 км - в третий день; 126 + 144 + 90 = 360 км - расстояние между городами. 126 - 90 = 36 км - на столько меньше проехали в третий день, чем в первый.
Систе́ма координа́т — комплекс определений, реализующий метод координат, то есть определять положение и перемещение точки или тела с чисел или других символов. Совокупность чисел, определяющих положение конкретной точки, называется координатами этой точки.
В математике координаты — совокупность чисел, сопоставленных точкам многообразия в некоторой карте определённого атласа.
В элементарной геометрии координаты — величины, определяющие положение точки на плоскости и в На плоскости положение точки чаще всего определяется расстояниями от двух прямых (координатных осей), пересекающихся в одной точке (начале координат) под прямым углом; одна из координат называется ординатой, а другая — абсциссой. В по системе Декарта положение точки определяется расстояниями от трёх плоскостей координат, пересекающихся в одной точке под прямыми углами друг к другу, или сферическими координатами, где начало координат находится в центре сферы.
В географии координаты выбираются как (приближённо) сферическая система координат — широта, долгота и высота над известным общим уровнем (например, океана). См. Географические координаты.
В астрономии небесные координаты — упорядоченная пара угловых величин (например, прямое восхождение и склонение), с которых определяют положение светил и вс точек на небесной сфере. В астрономии употребляют различные системы небесных координат. Каждая из них по существу представляет собой сферическую систему координат (без радиальной координаты) с соответствующим образом выбранной фундаментальной плоскостью и началом отсчёта. В зависимости от выбора фундаментальной плоскости система небесных координат называется горизонтальной (плоскость горизонта), экваториальной (плоскость экватора), эклиптической (плоскость эклиптики) или галактической (галактическая плоскость).
Наиболее используемая система координат — прямоугольная система координат (также известная как декартова система координат).
Координаты на плоскости и в можно вводить бесконечным числом разных Решая ту или иную математическую или физическую задачу методом координат, можно использовать различные координатные системы, выбирая ту из них, в которой задача решается проще или удобнее в данном конкретном случае. Известным обобщением системы координат являются системы отсчёта и
Пошаговое объяснение: