Это задача, как правило, - на нахождение наибольшего общего делителя чисел 58 и 64. По алгоритму Евклида НОД данных чисел равен двум, т.к.
НОД(58;64)=НОД(58;64-58)=НОД(58;6)=
НОД(58-6;6)=НОД(52;6)=НОД(52-6;6)=НОД(46;6)=
НОД(46-6;6)=НОД(40;6)=НОД(40-6;6)=НОД(34;6)=
=НОД(34-6;6)=НОД(28;6)=НОД(28-6;6)=НОД(22;6)=
НОД(22-6;6)=НОД(16;6)=НОД(16-6;6)=НОД(10;6)=
НОД(10-6;6)=НОД(4;6)=НОД(4;6-4)=
НОД(4;2)=НОД(4-2;2)=НОД(2;2)=2. Можно сделать два одинаковых подарка, в которых будет по 58/2=29 (шоколадок) и 64/2=32 /леденца./
В задаче надо было найти возможное количество подарков. Меньше НОД, я бы еще указал другие варианты, но в данной задаче, кроме двойки, числа 58 и 64 делятся еще только на единицу.
ответ 1 или 2.
2. Рассуждаем дальше.
Существует признак делимости какого-то числа на 11 и он формулируется так: чтобы число делилось на 11, разность
сумм его цифр на четных и на нечетных местах
должна делиться на 11.
3. Объединив обе идеи получаем: чтобы получить наименьшее число, нули и девятки должны чередоваться (две одинаковые цифры подряд в
разности дадут 0, поэтому две цифры подряд - это просто трата цифр) .
Разность указанных в признаке сумм составит: 9n, где n - количество девяток в числе.
Но, по условию задачи, можно изменить одну цифру: 9->8 или 0->1.
Оба эти изменения дадут разность сумм: 9n-1.
Задача: найти такое наименьшее число n, чтобы 9n-1 делилось на 11.
Методом перебора получим: n=5, 9*5-1 = 44 - делится на 11.
Теперь составим число: 909090909. Теперь понятно надеюсь