М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Тёна333
Тёна333
02.06.2023 03:09 •  Математика

Треугольник со сторонами 10, 17, 21. вращается вокруг большей стороны. определить объем и поверхность полученного тела

👇
Ответ:
Vs94ski
Vs94ski
02.06.2023

Тело, которое получилось, имеет веретенообразную форму: два конуса с одним общим основанием,
радиус r которого - высота ВО треугольника АВС, проведенная к стороне АС, вокруг которой треугольник вращается;
образующие - АВ и ВС соответственно;
высота каждого конуса - СО и ОА, сумма которых равна АС.
Объем тела вращения равен сумме объемов конусов:
V=v₁ +v₂
v₁=Sh₁:3=πr²h₁:3
v₂=Sh₂:3=πr²h₁:3
V=πr²h₁:3+πr²h₁:3=S(h₁+h₂):3=πr²*АС:3


Радиус r основания, общего для обоих конусов, найдем из площади треугольника АВС, найденной по формуле Герона.

Вычисления банальны, приводить поэтому иx не буду.
Площадь треугольника АВС равна 84
r=ВО=2S ᐃ АВС:АС=168:21=8
V =πr²*АС:3=π*64*21:3=448π
Площадь поверхности равна сумме площадей боковой поверхности конусов:
Sт.вр.=πrL₁+πrL₂=πr(L₁+L₁)
Sт.вр.=π*8*(10+17)=216π


Треугольник со сторонами 10, 17, 21. вращается вокруг большей стороны. определить объем и поверхност
4,4(11 оценок)
Открыть все ответы
Ответ:
AXMED2001
AXMED2001
02.06.2023

Не совсем понял задание,а в частности табличку,поэтому сугубо по задаче:

 Цех                кол-во за День                  Время                      ВСЕГО

1-й цех                  ?                                           18 Дней                 1800 кост

2-й цех                 ?                                           9 Дней                   1800 кост

Пошаговое объяснение:

1. 1800 : 18 = 100 (костюмов за день)

2. 1800 : 9 = 200 (костюмов за день)

3. 200 + 100 = 300 (общая выработка костюмов)

4. 1800 : 300 = 6 (дней)

ответ: за 6 дней общей выработки двух цехов получиться закрыть план в 1800 костюмов.

4,7(95 оценок)
Ответ:
Vadim55554
Vadim55554
02.06.2023

\displaystyle x=-1\\x=\frac14(1-i\sqrt3-\sqrt{2(-9-i\sqrt3})\\x=\frac14(1-i\sqrt3+\sqrt{2(-9-i\sqrt3})\\x=\frac14(1+i\sqrt3-\sqrt{2(-9+i\sqrt3})\\x=\frac14(1+i\sqrt3+\sqrt{2(-9+i\sqrt3})

Пошаговое объяснение:

x^5+2x^3+2x^2+1

Подставим вместо х -1. Тогда получим

(-1)^5+2(-1)^3+2(-1)^2+1=-1-2+2+1=0

Тогда х = -1 корень данного многочлена. Тогда этот многочлен можно представить в виде (x+1)Q^4(x), где Q - многочлен 4 степени. Найдём Q

Так как многочлен симметричный, то и Q будет симметричным. (это верно потому, что при раскрытии скобок данный многочлен будет иметь одинаковые коэффициенты везде, где у исходного были одинаковые коэффициенты)

Q(x)=x^4+ax^3+bx^2+ax+1 (симметричный многочлен)

Умножим его на (x+1) и найдем a и b

a=-1\\b=3

Тогда

Q(x)=x^4-x^3+3x^2-x+1

Тогда, чтобы найти корни многочлена x^5+2x^3+2x^2+1 нужно найти корни (x-1)(x^4-x^3+3x^2-x+1), т.е. решить уравнение

(x-1)(x^4-x^3+3x^2-x+1)=0

Тогда или х = - 1 или x^4-x^3+3x^2-x+1=0

Решим это уравнение

x^4-x^3+3x^2-x+1=0

так как х=0 не корень, то мы можем поделить на x² обе части уравнения

\displaystyle x^2-x+3-\frac1x+\frac1{x^2}=0

Тогда сделаем замену

\displaystyle t=x+\frac1x

Тогда

t^2-2=\displaystyle (x+\frac1x)^2-2=x^2+2+\frac1{x^2}-2=x^2+\frac1{x^2}

Преобразуем исходный многочлен

\displaystyle x^2-x+3-\frac1x+\frac1{x^2}=0\\(x^2+\frac1{x^2})-(x+\frac1x)+3=0\\(t^2-2)-t+3=0\\t^2-t+1=0\\t=\frac{1\pm\sqrt{1-4*1*1}}{2}\\t=\frac{1\pm\sqrt{-3}}{2}\\t=\frac12\pm i\frac12\sqrt3

Тогда сделаем обратную замену и решим для всех вариантов для t

\displaystyle t=\frac12\pm i\frac12\sqrt3\\x+\frac1x=\frac12\pm i\frac12\sqrt3\\x^2+1=(\frac12\pm i\frac12\sqrt3)x\\x^2-(\frac12\pm i\frac12\sqrt3)x+1=0\\x=\frac{(\frac12\pm i\frac12\sqrt3)\pm\sqrt{(\frac12\pm i\frac12\sqrt3)^2-4*1*1}}{2}\\

Тогда есть 2 варианта:

1)

 \displaystyle x=\frac14\pm i\frac14\sqrt3\pm\sqrt{\frac{-\frac121-\frac12i\sqrt3}{4}-1}

2)

\displaystyle x=\frac14\pm i\frac14\sqrt3\pm\sqrt{\frac{-\frac121+\frac12i\sqrt3}{4}-1}

Тогда корни нашего исходного многочлена это

\displaystyle x=-1\\x=\frac14(1-i\sqrt3-\sqrt{2(-9-i\sqrt3})\\x=\frac14(1-i\sqrt3+\sqrt{2(-9-i\sqrt3})\\x=\frac14(1+i\sqrt3-\sqrt{2(-9+i\sqrt3})\\x=\frac14(1+i\sqrt3+\sqrt{2(-9+i\sqrt3})

4,6(32 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ