1) 56:4=14 литров четверть бака 2) 56:672 =1/12 л расход бензина на 1 км 3) 100*1/12=25/3 л расход бензина летом, на каждые 100 км 4) 25/3+1= 28/3 л расход бензина зимой, на каждые 100 км 5) 14:28/3*100 =150 км расстояние на которое хватит четверти бака зимой
ответ 150 км
№2 В условие не до конца написан вопрос: СКОЛЬКО ЗАДАЧ РЕШИЛА МАША? Пусть всего было х задач, поскольку каждую задачу решили по 3 ученика, то на всех приходится 3х решенных задачи. Также из условия видно, что поскольку Катя решила 8 задач - наибольшее количество, а Петя 5 задач - наименьшее количество. То Маша и Игорь решили каждый задач меньше 8, но больше 5. 5<Маша<8 5<Игорь<8Т.е. и Игорь и Маша решили 6 или 7 задач. Поскольку все вместе они решили 3х задач, то это количество должно быть кратно 3: 1) Маша и Игорь решили по 6 задач каждый:5+8+6+6=25 не кратно 3 2) Маша и Игорь решили 6 или 7 задач:5+8+6+7=26 не кратно 3 3) Маша и Игорь решили по 7 задач каждый:5+8+7+7=27 кратно 3 подходит Значит Маша решила 7 задач ответ 7 задач
Первый путь решения:
это уравнение в полных дифференциалах.
Потому что
dP/dy=dQ/dx.
где
Р=(2x-y+1)
Q=(2y-x-1)
Надо найти такую функцию U(x;y), что
dU/dx=P
dU/dy=Q.
Тогда решение будет U=C.
С одной стороны
dU/dx=2x-y+1
U= x^2-xy+x +C1(y)
С другой стороны
dU/dy=2y-x-1
U=y^2-xy-y+C2(x)
x^2-xy+x +C1(y)=y^2-xy-y+C2(x)
x^2+x +C1(y)=y^2-y+C2(x)
C1(y)=y^2-y
U= x^2-xy+x +C1(y)= x^2-xy+x +y^2-y=C
Второй путь решения.
Это уравнение, сводящееся к однородному.
(2x-y+1)dx+(2y-x-1)dy=0
сгруппируем так:
(2(x+1/3) - (y-1/3))dx+(2(y-1/3)- (x+1/3))dy=0
замена
a=x+1/3; da=dx
b=y-1/3; db=dy
(2a-b)da+ (2b-a)db=0- однородное
вводим новую функцию
b/a=u
b=ua
db=uda+adu
(2a- ua)da+ (2ua-a)(uda+adu)=0
(2- u)da+ (2u- 1)(uda+adu)=0
(2+ 2u^2- 2u)da+ (2u-1)adu=0
разделяем переменные
∫da/a= 1/2*∫(1-2u)du/( u^2- u+1)
заметим, что (1-2u)du= -d(u^2- u+1)
ln(C*|a|)=-1/2 *ln(C|(u^2- u+1|)
откуда
a=C/√(u^2- u+1)
a*√((b/a)^2- b/a+1)=C
√((b^2- b*a+a^2)=C
(y-1/3)^2- (y-1/3)(x+1/3)+(x+1/3)^2=C^2
Пошаговое объяснение: