Первый путь решения:
это уравнение в полных дифференциалах.
Потому что
dP/dy=dQ/dx.
где
Р=(2x-y+1)
Q=(2y-x-1)
Надо найти такую функцию U(x;y), что
dU/dx=P
dU/dy=Q.
Тогда решение будет U=C.
С одной стороны
dU/dx=2x-y+1
U= x^2-xy+x +C1(y)
С другой стороны
dU/dy=2y-x-1
U=y^2-xy-y+C2(x)
x^2-xy+x +C1(y)=y^2-xy-y+C2(x)
x^2+x +C1(y)=y^2-y+C2(x)
C1(y)=y^2-y
U= x^2-xy+x +C1(y)= x^2-xy+x +y^2-y=C
Второй путь решения.
Это уравнение, сводящееся к однородному.
(2x-y+1)dx+(2y-x-1)dy=0
сгруппируем так:
(2(x+1/3) - (y-1/3))dx+(2(y-1/3)- (x+1/3))dy=0
замена
a=x+1/3; da=dx
b=y-1/3; db=dy
(2a-b)da+ (2b-a)db=0- однородное
вводим новую функцию
b/a=u
b=ua
db=uda+adu
(2a- ua)da+ (2ua-a)(uda+adu)=0
(2- u)da+ (2u- 1)(uda+adu)=0
(2+ 2u^2- 2u)da+ (2u-1)adu=0
разделяем переменные
∫da/a= 1/2*∫(1-2u)du/( u^2- u+1)
заметим, что (1-2u)du= -d(u^2- u+1)
ln(C*|a|)=-1/2 *ln(C|(u^2- u+1|)
откуда
a=C/√(u^2- u+1)
a*√((b/a)^2- b/a+1)=C
√((b^2- b*a+a^2)=C
(y-1/3)^2- (y-1/3)(x+1/3)+(x+1/3)^2=C^2
Пошаговое объяснение:
Пошаговое объяснение:
Количество книг во второй полке берем как - Х и составляем уравнение
5Х - 25=Х+7
5Х - Х= 7 + 25
4Х = 32
Х = 32:4
Х= 8
Во второй полке было 8 книг. Проверяем ответ: на первой полке в 5 раз больше 8×5=40
С первой полки взяли 25 книг 40-25=15 книг осталось
Во вторую полку полодили 7 книг 8+7=15 книг
В первой полке 15 книг, во второй полке тоже стало 15 книг
Это я написала чтобы доказать правильность ответа
Можно в уравнении вместо Х-а поставить 8 и решить уравнение
5 × 8 - 25= 8 + 7
15=15