М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
marinakomarova
marinakomarova
26.01.2020 21:07 •  Математика

Через вершину конуса под углом 60° к плоскости основания проведена плоскость, отсекающая дугу 90°. Высота конуса равна H. Вычислите площадь сечения + Рисунок)

👇
Ответ:
PolinaT11
PolinaT11
26.01.2020
Хорошо, давайте рассмотрим данный вопрос шаг за шагом.

1. Начнем с построения рисунка для лучшего понимания задачи.

(Иллюстрация не поддерживается)

2. Обратим внимание на то, что наш конус имеет вершину, которая находится под углом 60° к плоскости основания. Это означает, что если мы продлеваем это основание до пересечения с плоскостью, то получим прямой угол. Также, если проводим линию от вершины конуса до точки пересечения плоскости с дугой, получим высоту конуса.

3. Обратимся к заданию, которое говорит, что плоскость отсекает дугу основания конуса на 90°. Это означает, что часть основания дуги, находящаяся противоположно от угла 90°, будет отсекаться плоскостью и составит сечение конуса.

4. Мы можем заметить, что сечение будет иметь форму сектора круга. А чтобы рассчитать его площадь, нам необходимо знать длину дуги и радиус основания.

5. Поскольку нам дано, что плоскость отсекает дугу на 90°, а угол сектора круга равен 90°, мы можем сказать, что угол сектора равен половине угла отсечения дуги (т.е. 90° ÷ 2 = 45°).

6. Радиус основания конуса — это длина линии, которую мы видим на плоскости основания от точки пересечения плоскости с дугой до основания конуса. Такая линия составляет прямоугольный треугольник с углом 60° и высотой H.

7. Мы можем использовать тригонометрическую функцию синуса для вычисления радиуса основания. Формула для этого будет выглядеть следующим образом: sin(60°) = r/H, где r — радиус основания.

8. Пользуясь этой формулой, мы можем найти радиус основания.
sin(60°) = r/H
r = H * sin(60°)
r = H * √3/2
r = H√3/2

9. Теперь мы можем вычислить длину дуги основания конуса, используя формулу для дуги круга: дуга = (угол в радианах) × (радиус).
У нас угол сектора равен 45°, и в радианах этот угол будет равен π/4.
дуга = (π/4) × (H√3/2)
дуга = (Hπ√3)/8

10. Теперь у нас есть все необходимые данные для расчета площади сечения. Формула для площади сектора круга: площадь = (угол в радианах) × (радиус^2).
площадь = (π/4) × ((H√3/2)^2)
площадь = (π/4) × (3H^2/4)
площадь = (3πH^2)/16

Таким образом, площадь сечения конуса равна (3πH^2)/16.
4,4(39 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ