М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
лена062
лена062
07.08.2020 01:31 •  Математика

Длина цветника прямоугольной формы равна 20м ширина 15м. его площадь составляет десятую часть площади огорода. найти площадь огорода.

👇
Ответ:

1)20*15=300(см2)-площадь цветника.

2)300*10=3000(см2)-площадь огорода.

4,4(64 оценок)
Ответ:
nutswai
nutswai
07.08.2020
20*15=300м2 - площадь цветника,300*10=3000м2 площадь огорода.
4,4(35 оценок)
Открыть все ответы
Ответ:

а), б). Для комплексных чисел z1 = x1 + iy1, z2 = x2 + iy2 сумма и разность находятся по формулам z1 ± z2 = (x1 ± x2) + i(y1 ± y2).

В нашем случае имеем z1 + z2 = (-2 + 3) + i(5 - 4) = 1 + i, z2 - z1 = 3 - (-2) + i(-4 - 5) = 5 - 9i.

в) Перемножаем z1 и z2 как двучлены с учетом равенства i2 = -1:

z1z2 = (-2 + 5i)(3 - 4i) = (-2)3 + 15i + 8i - 20i2 = -6 + 20 + i(15 + 8) = 14 + 23i.

г) Для нахождения частного  умножим числитель и знаменатель этой дроби на число, сопряженное знаменателю, т.е. на 3 + 4i; получим .

4,7(2 оценок)
Ответ:

Сначала определения. Степень вершины графа - это количество рёбер, которые выходят из этой вершины. Петля - ребро, начало и конец которого находятся в одной и той же вершине. При подсчёте степени ребро-петля учитывается дважды.

а) 9, 8, 8, 7, 6, 6, 3, 2, 1

Количество вершин с нечётной степенью (9,7,3,1) чётное. Так как вершин всего 9, а старшая степень тоже равна 9, то без рёбер-петель не обойтись. Пример такого псевдографа на рис. 1

б) 8, 8, 7, 7, 6, 5, 4, 2, 1

Количество вершин с нечётной степенью (7,7,5,1) чётное. Так как вершин всего 9, старшая степень 8 у двух вершин, а младшая степень 1 только у одной вершины, то без рёбер-петель опять не обойтись. Пример такого псевдографа на рис. 2

в) 8, 7, 6, 5, 4, 4, 3, 2, 1

Количество вершин с нечётной степенью (7,5,3,1) чётное. Пример такого графа на рис. 3

г) 8, 7, 5, 4, 4, 3, 2, 2, 2

Количество вершин с нечётной степенью (7,5,3) нечётное. Такой граф построить нельзя, так как каждое ребро соединяет две вершины, поэтому сумма степеней вершин графа - число чётное.

ответ: а) б) в)


Вася выписал в ряд степени всех вершин графа. какие наборы чисел он мог написать? а)9,8,8,7,6,6,3,2,
4,6(43 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ