а), б). Для комплексных чисел z1 = x1 + iy1, z2 = x2 + iy2 сумма и разность находятся по формулам z1 ± z2 = (x1 ± x2) + i(y1 ± y2).
В нашем случае имеем z1 + z2 = (-2 + 3) + i(5 - 4) = 1 + i, z2 - z1 = 3 - (-2) + i(-4 - 5) = 5 - 9i.
в) Перемножаем z1 и z2 как двучлены с учетом равенства i2 = -1:
z1z2 = (-2 + 5i)(3 - 4i) = (-2)3 + 15i + 8i - 20i2 = -6 + 20 + i(15 + 8) = 14 + 23i.
г) Для нахождения частного умножим числитель и знаменатель этой дроби на число, сопряженное знаменателю, т.е. на 3 + 4i; получим .
Сначала определения. Степень вершины графа - это количество рёбер, которые выходят из этой вершины. Петля - ребро, начало и конец которого находятся в одной и той же вершине. При подсчёте степени ребро-петля учитывается дважды.
а) 9, 8, 8, 7, 6, 6, 3, 2, 1
Количество вершин с нечётной степенью (9,7,3,1) чётное. Так как вершин всего 9, а старшая степень тоже равна 9, то без рёбер-петель не обойтись. Пример такого псевдографа на рис. 1
б) 8, 8, 7, 7, 6, 5, 4, 2, 1
Количество вершин с нечётной степенью (7,7,5,1) чётное. Так как вершин всего 9, старшая степень 8 у двух вершин, а младшая степень 1 только у одной вершины, то без рёбер-петель опять не обойтись. Пример такого псевдографа на рис. 2
в) 8, 7, 6, 5, 4, 4, 3, 2, 1
Количество вершин с нечётной степенью (7,5,3,1) чётное. Пример такого графа на рис. 3
г) 8, 7, 5, 4, 4, 3, 2, 2, 2
Количество вершин с нечётной степенью (7,5,3) нечётное. Такой граф построить нельзя, так как каждое ребро соединяет две вершины, поэтому сумма степеней вершин графа - число чётное.
ответ: а) б) в)
1)20*15=300(см2)-площадь цветника.
2)300*10=3000(см2)-площадь огорода.