Б) (2*245)+166=656 бусин
В) 1/8 относиться как 32/8=4 отсюда следует 32-4=28 м ткани
ответ: нет . Более того , невозможно получить произвольное натуральное число N.
Пошаговое объяснение:
Найдем среди чисел от 2 жо 1994 число содерщащее в делителях максимальную степень двойки.
Такое число единственно и равно : 2^10=1024
Предположим , что произвольная комбинация + ,- из слагаемых :
1/2 ;1/3 ; 1/4 1/994 равна натуральному числу N.
Тогда умножим обе части равенства на 2^10.
Во всех дробях вида : 2^10/k сократяться со знаменателем все степени числа 2, что содержит число k. (То есть знаменатели всех дробей станут нечетными) . Если число k отлично от 2^10 , то числители этих дробей будут четны , тк все эти числа содержат в себе меньше чем 2^10.
Но если число k=2^10=1024 , то это единственное число которое после сокращения имеет нечетный числитель равный 1. Другими словами это будет просто число 1 (2^10/2^10)=1.
Всего от 2 до 1994 : 1993 числа , одно из которых равно единице , а остальные имеют четные числители и нечетные знаменатели.
Если перенести единицу в правую часть равенства , то получим cправа:
2^10*N +-1 - абсолютно очевидно , что число справа является нечетным. (+- в зависимости от того какой знак стоит перед ним)
А слева у нас остается 1992 числа с четными числителями и нечетными знаменателями. Если привести каждую из данных дробей к общему нечетному знаменателю ( тк общий знаменатель нечетных чисел число нечетное) , то получим дробь с нечетным знаменателем и числителем состоящим сумм и разностей четных чисел. ( Cумма или разность в любых комбинациях произвольного числа четных чисел число четное)
Таким образом получаем :
A/B= 2^10 *N+-1=C
A-четное число
B-нечетное число
2^10*N +-1=C -нечетное число
Но тогда :
A=B*C -то есть мы получили, что произведение двух нечетных чисел равна четному числу. Мы пришли к противоречию.
Нельзя расставить знаки «+». «-» между дробями 1/2,1/3,1/4...1/1994 так , чтобы в результате получилось натуральное число. Cоответственно число 4 не является исключением из правил и его так же получить невозможно.
Пошаговое объяснение:
1. Разложим число 144 на простые множители:
144/2=72; 72/2=36; 36/2=18; 18/2=9; 9/3=3; 3/3=1
144=2·2·2·2·3·3
А теперь перемножим эти числа между собой так, чтобы полученные значения входили в интервал от 10 до 51.
2·2·2·2=16
2·2·2·2·3=48
2·2·2·3=24
2·2·3=12
2·2·3·3=36
2·3·3=12
Итак, значения x, являющиеся делителями числа 144, - это 12; 16; 24; 36 и 48.
2. b=7-3=4
3. 24/7=3 с остатком 3. Значит к числу 24 нужно прибавить 7-3=4, чтобы делилось на 7:
24+4=28.
Допустим максимальное двузначное число x: 99.
Тогда 99-28=71.
Зная таблицу умножения можно легко найти число , которое делится на 7, это 70 (70/7=10).
Находим наибольшее двузначное число x:
70+24=94
ответ: 94.
4. Находим наибольший общий делитель:
НОД (1095; 742)=1
1095/3=365; 365/5=73; 73/73=1; 1095=3·5·73
742/2=371; 371/7=53; 53/53=1; 742=2·7·53
Как видим, общий множитель числа будет 1.
Так что я доказываю обратное, что числа 1095 и 742 являются взаимно простыми, так как они не имеют общих делителей, кроме 1.
б)411 в) 4м
Пошаговое объяснение:
245+166
32:8×1