Проекция бокового ребра на основание равна (2/3)h, где h - высота основания. h = a*cos 30° = 12*(√3/2) = 6√3 см. (2/3)h = (2/3)*6√3 = 4√3 см. Отсюда находим высоту H пирамиды: Н = (2/3)h*tg30° = 4√3*(1/√3) = 4 см. Теперь находим апофему А, проекция которой тна основание равна (1/3)h = (1/3)*6√3 = 2√3 см. А = √(((1/3)h)² + H²) = √(12+16) = √28 = 2√7 см. Площадь So основания равна: So = a²√3/4 = 144√3/4 = 36√3 см². Площадь Sбок боковой поверхности равна: Sбок = (1/2)Р*А = (1/2)*3*12*2√7 = 36√7 см². Полная площадь S поверхности равна: S = So + Sбок = 36√3 + 36√7 = 36(√3 + √7) см².
Самое большое число, на которое делятся все какие-либо данные числа, это их наибольший общий делитель -НОД Определение: Делитель натурального числа a — это такое натуральное число, на которое данное число a делится без остатка Чтобы найти НОД (наибольший общий делитель) двух или более натуральных чисел нужно: 1) разложить данные числа на простые множители: 32=2*16=2*2*8=2*2*2*2 48=3*16=3*2*2*2*2 или 32={2,2,2,2} 48={3,2,2,2,,2} Одинаковые множители - четыре двойки. Произведение одинаковых простых множителей данных чисел 2*2*2*2*=16- это и есть самое большое число, т.е. наибольший общий делитель , на которое нацело делятся и 32, и 48
h = a*cos 30° = 12*(√3/2) = 6√3 см.
(2/3)h = (2/3)*6√3 = 4√3 см.
Отсюда находим высоту H пирамиды: Н = (2/3)h*tg30° = 4√3*(1/√3) = 4 см.
Теперь находим апофему А, проекция которой тна основание равна (1/3)h = (1/3)*6√3 = 2√3 см.
А = √(((1/3)h)² + H²) = √(12+16) = √28 = 2√7 см.
Площадь So основания равна:
So = a²√3/4 = 144√3/4 = 36√3 см².
Площадь Sбок боковой поверхности равна:
Sбок = (1/2)Р*А = (1/2)*3*12*2√7 = 36√7 см².
Полная площадь S поверхности равна:
S = So + Sбок = 36√3 + 36√7 = 36(√3 + √7) см².