Пошаговое объяснение:
а) (BMK) ∩ (ADD1) = KM,
(BCC1) || (ADD1), следовательно,
(BMK) ∩ (BCC1) = BT || KM. Проведём AM1 || KM.
DM = 4/5 DD1, MM1 = AK = 2/5 DD1, тогда DM1 = 2/5 DD1 = AK.
BT || KM || AM1, т.е. BT || AM1;
∠M1AD = ∠TBC - острые углы с соответственно параллельными сторонами, AD = BC и ΔADM1 = ΔBCT по катету и острому углу.
Тогда CT = DM1= AK.
AKTC прямоугольник и КТ || AC
KT ⊂ (BMK) следовательно AC || (BMK)
б) (BMK) ∩ (ABC) = QB
DM1 = M1M = 4, AM1 || QM
По т. Фалеса AQ = AD = 8 и ΔQAB - прямоугольный равнобедренный.
Пусть H - середина QB, тогда по свойству равнобедренного треугольника AH ⊥ QB.
Имеем: QB ⊥ AH, QB ⊥ AK, следовательно QB ⊥ (KAH).
В ΔKAH проведём AP ⊥ KH.
Тогда AP ⊥ KH, AP ⊥ QB,
т.е. AP ⊥ (BMK) и AP = AK * AH/KH, искомое расстояние
AH = ½ QB = 4√2.
KH = √AK² + AH² = √16 + 32 = 4√3
AP = 4 * 4√2/4√3 = 4√6/3
ответ: 4√6/3
Перепишем уравнение в другом виде:
169,96
= 60,7
2,88 : (5,4х - 1,67)
Это выражение дает нам возможность упростить его еще:
169,96 2,88
: = 60,7
1 5,4х - 1,67
Воспользовавшись правилом деления дробей, получаем:
169,96 5,4х - 1,67
* = 60,7
1 2,88
Сокращаем числитель первой и знаменатель второй дроби. В результате имеем:
59,01 * (5,4х - 1,67) = 60,7
Умножаем 59,01 на каждое число в скобке, в результате имеем:
318,65х - 98,55 = 60,7. Отсюда
318,65х = 60,7 + 98,55
318,65х = 159,25
х = 159,25/318,65
х=0,5