Пусть событие А - изделие окажется бракованным и рассмотрим гипотезы :
H_1-H
1
− изделие изготовлено первым поставщиком;
H_2-H
2
− изделие изготовлено вторым поставщиком;
H_3-H
3
− изделие изготовлено третьим поставщиком
Из условия P(H_1)=\dfrac{200}{1000}=0.2;~ P(H_2)=\dfrac{300}{1000}=0.3;~ P(H_3)=\dfrac{500}{1000}=0.5P(H
1
)=
1000
200
=0.2; P(H
2
)=
1000
300
=0.3; P(H
3
)=
1000
500
=0.5 и условные вероятности
\begin{gathered}P(A|H_1)=5\%:100\%=0.05\\ P(A|H_2)=6\%:100\%=0.06\\ P(A|H_3)=4\%:100\%=0.04\end{gathered}
P(A∣H
1
)=5%:100%=0.05
P(A∣H
2
)=6%:100%=0.06
P(A∣H
3
)=4%:100%=0.04
По формуле полной вероятности, вероятность получения со склада бракованного изделия равна
\begin{gathered}P(A)=P(A|H_1)P(H_1)+P(A|H_2)P(H_2)+P(A|H_3)P(H_3)=\\ \\ =0.2\cdot 0.05+0.3\cdot 0.06+0.5\cdot 0.04=0.048\end{gathered}
P(A)=P(A∣H
1
)P(H
1
)+P(A∣H
2
)P(H
2
)+P(A∣H
3
)P(H
3
)=
=0.2⋅0.05+0.3⋅0.06+0.5⋅0.04=0.048
Тогда вероятность получения со склада годного изделия равна
\overline{P(A)}=1-P(A)=1-0.048=0.952
P(A)
=1−P(A)=1−0.048=0.952
ответ: 0,952.
-3.
Пошаговое объяснение:
1. Рассмотрим функцию
y = log(4) (x^2 +6x +25) - 5.
Функция возрастающая, поэтому своего значения наименьшего значения функция достигает при наименьшем значении аргумента.
2, x^2 +6x +25 = (х^2 + 6х +9) +16 = (х+3)^2 + 16
Наименьшим значением первого слагамого является 0 (при х=-3), т.к. (х+3)^2 неотрицательно при любом значении х. Тогда наименьшим значением всей суммы является число 0+16 = 16.
3. Найдём наименьшее значение функции у:
у(16) = log(4) (16) - 5 = 2-5 = -3.
ответ: -3.
Pn(z) = an(z – z1)(z – z2) (z – zn).
Пошаговое объяснение: