вероятность того, что первый выйдет на одном из 8-ми этажей равна 1.
вероятность того, что второй выйдет на одном из 8-ми этажей, кроме того, на котором вышел первый, равна 7/8.
вероятность того, что третий выйдет на одном из 8-ми этажей, кроме того, на котором вышел первый и второй равна 6/8.
вероятность того, что четвертый выйдет на одном из 8-ми этажей, кроме того, на котором вышел первый, второй и третий, равна 5/8.
тогда вероятность того, что все они вышли на разных этажах, равна 1*7/8*6/8*5/8=210/256=105/128.
вероятность одного попадания в цель при одном залпе из двух орудий равна р1,2=р1*р2.
0,38=р1*08.
р1=0,38/0,8=19/40=0,475.
Так, мне уже понятно, что ноль в этом году должен быть только один раз или ни одного. То есть рассматриваем годы, начиная с 2011. Давайте посмотрим какой год (хотя-бы один) вообще можно назвать восхитительным по версии автора задачи. Например это может быть год, состоящий из цифр 0, 1, 2, 9, то есть это годы 2019 и 2091, из них можно составить два двузначных числа: 19 и 20. Теперь, когда нам понятно, что нам нужно искать, приступаем к поиску всех таких годов. Нам в этом варианты ответов, будем их перебирать, начиная с большего - с восьми годов, найдем ли мы столько. Два у нас уже есть. Нужно искать двузначные числа из разных десятков, иначе не будут соблюдены все условия. 29 и 30 дадут нам годы: 2039 и 2093. 39 и 40 и последующие такие пары уже нам не подойдут, нам нужна двойка. Следовательно только 4 года можем мы назвать восхитительными: 2019, 2091, 2039, 2093.
ответ: 4 (вариант В).
Пошаговое объяснение:
Відповідь:
49°
Покрокове пояснення:
Рассмотрим △АМВ, /_СМА является внешним, поетому, из свойст внешних углов
/_СМА= /_МВА+ /_ВАМ
/_ВАМ=113-95=18° → /_ВАС=36°
В △АВС имеем /_ВАС=36° и /_СВА=95° →
/_АСВ=180-(36+95)=49°