
заявленный и в приведённом условии. Далее порассуждаем практически:
;
;
;
;
;
;
производная
больше производной
, т.е. дальше левая часть уравнения, растёт быстрее, чем правая, а значит, других корней при
быть не может.
левая часть уравнения положительна, а правая отрицательна, так что других корней при
быть не может.
, так как при сравнении двух непрерывных функций на этом интервале меняется знак.
где
то:
Это число, очевидно иррационально, что легко доказать от обратного методом Евклида. Однако справа должно быть рациональное число
а значит, мы пришли к противоречию. Таким образом, второе решение иррационально.
по определению дающая решение, т.е. являющаяся обратной, к функции
Функция вводится аналогично, скажем, функции
являющейся решением уравнения
но в отличие от арктангенса, функция Ламберта используется намного реже в прикладных задачах (в основном в задачах теплопроводности), и поэтому – менее широко известна. Функция вводится на расширенной комплексной плоскости, т.е. алгебраически, а не арифметически, а значит по определению, может быть многозначной, и является таковой при отрицательных значениях аргумента
хотя нам достаточно будет знать лишь её действительные значения, которых при отрицательных аргументах всегда два. Вид действительных ветвей функции Ламберта представлен на приложенном изображении.
;
;
;
;
тогда:
отсюда через функцию Ламберта:
;
равна:
;
искомое значение и вычисляя
добиваясь его равенства 
как раз и даст значение
, что можно легко проверить подстановкой.
;
;
;
;
х=скорость грузовой машины
х+15=скорость легковой машины
10х=(х+15)×8=расстояние от П. до К.
10х=8х+120
2х=120
х=120÷2
х=60 (скорость грузового транспорта)
60+15=75(скорость легкового автомобиля)
10×60=75×8
600=600
ответ от города П. до города К. 600 км.