Линейная функция задается формулой: у = kx + b.
а) графики линейных функций y = k₁ · x + b₁ и у = k₂ · x + b₂ пересекаются, если коэффициенты при переменной х различны, т.е k₁ ≠ k₂, поэтому графики функций у = 5х + 3 и у = -4х - 7 пересекаются, т.к. 5 ≠ -7.
б) графики линейных функций y = k₁ · x + b₁ и у = k₂ · x + b₂ параллельны, если коэффициенты при переменной х совпадают, т.е. k₁ = k₂, а b₁ ≠ b₂, поэтому графики функций у = 5х + 3 и у = 5х - 7 параллельны, т.к. 5 =5, а 3 ≠ -7.
в) графики линейных функций y = k₁ · x + b₁ и у = k₂ · x + b₂ совпадают, если коэффициенты при переменной х совпадают или пропорциональны, т.е. k₁ = k₂, а также b₁ = b₂, поэтому графики функций у = 5х + 3 и у = 10х + 6 совпадают, т.к. 10 : 5 = 6 : 3 = 2.
Чтобы убедится в этом достаточно построить графики указанных функций.
Линейная функция задается формулой: у = kx + b.
а) графики линейных функций y = k₁ · x + b₁ и у = k₂ · x + b₂ пересекаются, если коэффициенты при переменной х различны, т.е k₁ ≠ k₂, поэтому графики функций у = 5х + 3 и у = -4х - 7 пересекаются, т.к. 5 ≠ -7.
б) графики линейных функций y = k₁ · x + b₁ и у = k₂ · x + b₂ параллельны, если коэффициенты при переменной х совпадают, т.е. k₁ = k₂, а b₁ ≠ b₂, поэтому графики функций у = 5х + 3 и у = 5х - 7 параллельны, т.к. 5 =5, а 3 ≠ -7.
в) графики линейных функций y = k₁ · x + b₁ и у = k₂ · x + b₂ совпадают, если коэффициенты при переменной х совпадают или пропорциональны, т.е. k₁ = k₂, а также b₁ = b₂, поэтому графики функций у = 5х + 3 и у = 10х + 6 совпадают, т.к. 10 : 5 = 6 : 3 = 2.
Чтобы убедится в этом достаточно построить графики указанных функций.
!5х-3!=7 два корня будет решаем 5х-3=7 и 5х-3=-7
5х-3=7 5х=7+3 5х=10 х=10:5 х=2 решаем 5х-3=-7 5х=-7+3 5х=-4 х =-4/5
ответ: х=2 и х=-4/5