1) Температура воздуха в 4 ч была -1° С, в 10 ч была 0° С, в 14 ч была 3° С, в 16 ч была 5°С.
2) Температура воздуха была равна 2° С в 12 ч и 22 ч, равна 4°С в 15 и 20 ч; -1°С в 4 и 9 ч; 5°С в 16 и 13 ч.
3) Самая низкая температура была -3°С в 7 ч.
4) Самая высокая температура была 6°С в 17 ч.
5) Нулевой температура была в 3, 10 и 24 ч.
6) Температура воздуха была ниже 0°С с 3 ч до 10 ч, а выше 0°С с 0 ч до до 3 ч и с 10 ч до 24 ч.
7) Температура повышалась с 7 ч до 17 ч, а понижалась с 0 ч до 7 ч и с 17 ч до 24 ч.
В урне находится KK белых и N−KN−K чёрных шаров (всего NN шаров). Из нее наудачу и без возвращения вынимают nn шаров. Найти вероятность того, что будет выбрано ровно kk белых и n−kn−k чёрных шаров.

По классическому определению вероятности, искомая вероятность находится по формуле гипергеометрической вероятности (см. пояснения тут):
P=CkK⋅Cn−kN−KCnN.(1)
P=CKk⋅CN−Kn−kCNn.(1)
*Поясню, что значит "примерно": шары могут выниматься не из урны, а из корзины, или быть не черными и белыми, а красными и зелеными, большими и маленькими и так далее. Главное, чтобы они были ДВУХ типов, тогда один тип вы считаете условно "белыми шарами", второй - "черными шарами" и смело используете формулу для решения (поправив в нужных местах текст конечно:)).
Калькулятор для решения задачи
В урне находится K=10 белых и N−K=8  чёрных шаров (всего N=18. Из нее наудачу и без возвращения вынимают n=6  шаров. Найти вероятность того, что будет вынуто ровно k=2  белых и n−k=4
Вероятность того, что вынуто 2 белых и 4 черных шара, равна:
P=CkK⋅Cn−kN−KCnN=C210⋅C48C618=45⋅7018564=0.16968
Здесь сочетания вычислены следующим образом:
C210=10!2!⋅(10−2)!=10!2!⋅8!=9⋅101⋅2=45C48=8!4!⋅(8−4)!=8!4!⋅4!=5⋅6⋅7⋅81⋅2⋅3⋅4=70C618=18!6!⋅(18−6)!=18!6!⋅12!=13⋅14⋅15⋅16⋅17⋅181⋅2⋅3⋅4⋅5⋅6=18564