Дорогие друзья. токарь и его ученик за 2 часа обтачивают 54 детали.если токарь будет работать 3 часа,а его ученик 4 часа.то вместе они обтачивают 92 детали.сколько деталей обтачивает каждый из их за 1 час.
Пусть х дет за час обтачивает токарь у дет за час обтачивает ученик составим систему 3х+4у=92 2х+2у=54 (*2) 3х+4у=92 - 4х+4у=108 -х=-16 >>>x=16 дет обтачивает ученик
Уравнения перепишем: 3х² + 4у = 0 ⇒ 4у = -3х² ⇒ у = -3/4 х² - на графике это парабола 2х - 4у -1 = 0 ⇒ 4у = 2х -1 ⇒ у = 2/4 х - 1/4 - на графике это прямая. Найдём границы интегрирования -3/4 х² = 1/2 х - 1/4 |·4 -3х² = 2х - 1 3х³ + 2х -1 = 0 Ищем корни по чётному коэффициенту: х1 = -1 и х2 = 1/3 Тепер надо найти 2 интеграла и выполнить вычитание а) Интеграл, под интегралом -3/4 х²dx в пределах от -1 до 1/3 = = -3х³/12 = -х³/4| в пределах от -1 до 1/3 = - 1/108 -1/4 = 28/108 = -14/54 = -7/27 б) интеграл, под интегралом (1/2х -1/4)dx в пределах от -1 до 1/4 = = 1/2 х²/2 - 1/4 х| в пределах от -1 до 1/3 = -5/6 S = -7|27 - ( -7|27) = -31/54 ответ: 31/54 (берём без минуса, т.к. минус показывает, что фигура лежит в отрицательной части)
Уравнения перепишем: 3х² + 4у = 0 ⇒ 4у = -3х² ⇒ у = -3/4 х² - на графике это парабола 2х - 4у -1 = 0 ⇒ 4у = 2х -1 ⇒ у = 2/4 х - 1/4 - на графике это прямая. Найдём границы интегрирования -3/4 х² = 1/2 х - 1/4 |·4 -3х² = 2х - 1 3х³ + 2х -1 = 0 Ищем корни по чётному коэффициенту: х1 = -1 и х2 = 1/3 Тепер надо найти 2 интеграла и выполнить вычитание а) Интеграл, под интегралом -3/4 х²dx в пределах от -1 до 1/3 = = -3х³/12 = -х³/4| в пределах от -1 до 1/3 = - 1/108 -1/4 = 28/108 = -14/54 = -7/27 б) интеграл, под интегралом (1/2х -1/4)dx в пределах от -1 до 1/4 = = 1/2 х²/2 - 1/4 х| в пределах от -1 до 1/3 = -5/6 S = -7|27 - ( -7|27) = -31/54 ответ: 31/54 (берём без минуса, т.к. минус показывает, что фигура лежит в отрицательной части)
у дет за час обтачивает ученик
составим систему
3х+4у=92
2х+2у=54 (*2)
3х+4у=92 -
4х+4у=108
-х=-16 >>>x=16 дет обтачивает ученик
2*16+2у=54
2у=54-32
2у=22
у=11 дет обтачивает токарь