4
Пошаговое объяснение:
Сергей разделил задуманное им натуральное число на 6 потом разделил задуманное число на семь затем разделил задуманное число на 8 получив в каждом из случаев некоторый остаток сумма этих остатков равна 18 какой остаток даёт задуманное число при делении на 28.
Пусть задумано Ч.
Остатки : первый меньше 6, второй меньше 7, третий меньше 8. Значит их сумма меньше либо равна 18.
Первый остаток 5, второй 6, третий 7.
Ч=6К+5
6К=7М+6
7М=8Н+7
К,М,Н -целые
6К=7*8*М*Н+49+6=56МН+55
Ч=56МН+60
56*М*Н на 28 делится.
Значит остаток от деления на 28 равен остатку от деления 60 на 28, т.е. равен 4.
(заметим, правда, что такого числа Ч не существует. Из последнего равенства М-нечетное, а из предыдущего -четное)
4
Пошаговое объяснение:
Сергей разделил задуманное им натуральное число на 6 потом разделил задуманное число на семь затем разделил задуманное число на 8 получив в каждом из случаев некоторый остаток сумма этих остатков равна 18 какой остаток даёт задуманное число при делении на 28.
Пусть задумано Ч.
Остатки : первый меньше 6, второй меньше 7, третий меньше 8. Значит их сумма меньше либо равна 18.
Первый остаток 5, второй 6, третий 7.
Ч=6К+5
6К=7М+6
7М=8Н+7
К,М,Н -целые
6К=7*8*М*Н+49+6=56МН+55
Ч=56МН+60
56*М*Н на 28 делится.
Значит остаток от деления на 28 равен остатку от деления 60 на 28, т.е. равен 4.
(заметим, правда, что такого числа Ч не существует. Из последнего равенства М-нечетное, а из предыдущего -четное)
Даны координаты фокуса параболы F(−2;2), и уравнение директрисы x−1=0 или х = 1.
Так как фокус левее директрисы , то график параболы имеет ветви влево. Вершина параболы находится посредине между директрисой и фокусом. Её координаты ((-2+1)/2; 2) = (-0,5; 2).
Параметр параболы равен расстоянию от фокуса до директрисы , то есть р = 3.
ответ: уравнение имеет вид (y - 2)² = -2*3(x + 0,5).