Лодка проплыла 18 км по течению и 20 км против течения. На всю поездку ушло 2 часа. Если скорость лодки 20 км / ч, какова скорость течения? 1) Найдите уравнение, созданное для текстовой задачи 2) Найдите решения уравнения 3) Найдите скорость потока
Пусть х км/ч - скорость течения реки, тогда (20 + х) км/ч - скорость лодки по течению реки, (20 - х) км/ч - скорость лодки против течения реки. Уравнение:
Нужно найти длины сторон AB = √((6-1)^2 + (1-2)^2) = √(5^2+(-1)^2) = √(25+1) = √26 BC = √((-1-6)^2 + (7-1)^2) = √((-7)^2+6^2) = √(49+36) = √85 AC = √((-1-1)^2 + (7-2)^2) = √((-2)^2+5^2) = √(4+25) = √29 Полупериметр p = (AB+BC+AC)/2 = (√26+√85+√29)/2 Площадь по формуле Герона S^2 = p(p-AB)(p-BC)(p-AC) = (√26+√85+√29)/2*(-√26+√85+√29)/2* *(√26-√85+√29)/2*(√26+√85-√29)/2 = = 1/16*(√26+√85+√29)(-√26+√85+√29)(√26-√85+√29)(√26+√85-√29) Дальше можно раскрыть скобки и получить какую-то сумму, но думаю, ничего красивого там не получится. И обратите внимание, эта формула - квадрат площади!
Пусть х км/ч - скорость течения реки, тогда (20 + х) км/ч - скорость лодки по течению реки, (20 - х) км/ч - скорость лодки против течения реки. Уравнение:
18/(20+х) + 20/(20-х) = 2
20 · (20 + х) + 18 · (20 - х) = 2 · (20 + х) · (20 - х)
400 + 20х + 360 - 18х = 2 · (20² - х²)
760 + 2х = 800 - 2х²
760 + 2х - 800 + 2х² = 0
2х² + 2х - 40 = 0
х² + х - 20 = 0
D = b² - 4ac = 1² - 4 · 1 · (-20) = 1 + 80 = 81
√D = √81 = 9
х₁ = (-1-9)/(2·1) = (-10)/2 = -5 (не подходит, так как < 0)
х₂ = (-1+9)/(2·1) = 8/2 = 4
ответ: 4 км/ч - скорость течения реки.
Проверка:
18/(20+4) + 20/(20-4) = 0,75 + 1,25 = 2 ч - время движения