1) Обозначим первоначальную скорость и время через υ₁ и t₁.
а скорость после увеличения и время после уменьшения через υ₂ и t₂
2) Так как пройденный путь равен произведению скорости на время, то можем записать:
S₁ = υ₁ · t₁ S₂ = υ₁ · t₁
Так как S₁ = S₂, то:
υ₁ · t₁ = υ₂ · t₂
3) После уменьшения времени на четверть, новое время составляет 3/4 от предыдущего, т.е. t₂ = (3/4) t₁
υ₁ · t₁ = υ₂ · (3/4)t₁
Сокращаем обе части на t₁ :
υ₁ = υ₂ · (3/4)
υ₂ = υ₁ /(3/4) = 4/3 υ₁
Δυ = 4/3υ₁ - υ₁ = 1/3 υ₁
Значит, скорость нужно увеличить на 33,3%
x₁= -1 6/7 ; x₂= 1 6/7
Пошаговое объяснение:
|2у+5у|-8=5
|2у+5у| = 5+8
|2у+5у| = 13
имеем два случая:
2y+5y = 13
7y = 13
y = 13:7
y = 1 6/7
или
2y+5y = -13
7y = -13
y = -13:7
y = -1 6/7