2. Квадрат.
Пошаговое объяснение:
Точки M и M1 симметричны относительно некоторой точки O , если точка O является серединой отрезка MM1. Тогда точка O называется центром симметрии.
Для 2-фигуры, то есть для квадрата точка пересечения диагоналей будет центром симметрии (см. рисунок).
Точки M и M1 симметричны относительно некоторой прямой (оси симметрии), если эти точки лежат на прямой, перпендикулярной данной, и на одинаковом расстоянии от оси симметрии.
У квадрата четыре осей симметрии (см. рисунок).
Находим уравнение прямой:
Так как проходит через начало координат, то ищем в виде:
у = кх
Подставив координаты В:
п/4 = к
Итак уравнение прямой: у = пх/4.
Будем вычислять криволинейный интеграл (хотя в данном случае он - прямолинейный))) )исходя из того, что параметром будет х:
тогда :dy = y'dx = (п/4)dx
Получим:
I=![\int\limits^1_0 {x(cosax} \, dx-asinaxdx)=\int\limits^1_0 {xcosax} \, dx-\int\limits^1_0 {axsinax} \, dx](/tpl/images/0065/6077/83c50.png)
Здесь я обозначил:
а = П/4
Далее используя интегрирование по частям:
I=![\frac{1}{a}\int\limits^1_0 {x} \, dsinax+\int\limits^1_0 {x} \, dcosax=\frac{1}{a}xsinax|_0^1-\frac{1}{a}\int\limits^1_0 {sinax} \, dx+](/tpl/images/0065/6077/7e54e.png)
-![-\frac{1}{a}sinax|_0^1=\frac{4\sqrt{2}}{2\pi}+\frac{16}{\pi^2}{(\frac{\sqrt{2}}{2}-1)+\frac{\sqrt{2}}{2}-\frac{4\sqrt{2}}{2\pi}=\frac{\sqrt{2}}{2}(\frac{16}{\pi^2}+1)-\frac{16}{\pi^2}.](/tpl/images/0065/6077/1f984.png)