1) После того как отметили точки М(6;-2); N(-3;4) на координатной плоскости и соединили точки М и N, необходимо составить уравнение прямой МN (общий вид уравнения прямой y = kx + b) :
-2 = 6k + b (1)
4 = -3k + b (2)
Решаем данную систему уравнений: 1.)из (2) уравнения выразим b : 4 + 3k = b;
2.) 4 + 3k = b подставим в (1) уравнение : -2 = 6k + 4 + 3k, отсюда
k = -(2/3);
3.) b = 4 + 3*(-2/3) = 4 — 2 = 2
Тогда уравнение прямой МN : y = -(2/3)x + 2. Так как нам надо найти координаты точки пересечения отрезка MN с осью ординат (осью OY), следовательно x = 0. Подставим x = 0 в y = -(2/3)x + 2, получим :
y=-(2/3)*0 + 2 = 2. Тогда точка пересечения отрезка МN с осью ординат (назовём эту точку А) : А(0;2).
2) После того как отметили точки М(-2;2); N(1;4) на координатной плоскости и соединили точки М и N, необходимо составить уравнение прямой МN (общий вид уравнения прямой y = kx + b) :
2 = -2k + b (1)
4 = k + b (2)
Решаем данную систему уравнений: 1.)из (2) уравнения выразим b : 4 - k = b;
2.) 4 — k = b подставим в (1) уравнение : 2 = -2k + 4 - k, отсюда
k = 2/3;
3.) b = 4 - (2/3) = 10/3
Тогда уравнение прямой МN : y = (2/3)x + 10/3. Так как нам надо найти координаты точки пересечения отрезка MN с осью ординат (осью OY), следовательно x = 0. Подставим x = 0 в y = (2/3)x + 10/3, получим :
y=(2/3)*0 + 10/3 = 10/3. Тогда точка пересечения отрезка МN с осью ординат (назовём эту точку А) : А(0;10/3).
1) x(4-x)(x-2) <= 0 Особые точки: 0; 2; 4. Берём любое число, например, 1. 1(4-1)(1-2) = 1*3(-1)<0 Мы даже не вычисляем, важен только знак. Число нам подходит, значит, отрезок [0; 2], в который входит 1, является решением. А ещё решением являются промежутки через один от него. x € [0; 2] U [4; +oo) Остальные делаются точно также. 2) (x+3)(x+1)^2*(x-2) <= 0 Здесь есть квадрат, который =0 в точке x=-1 и >0 во всех остальных точках. Поэтому мы отмечаем x=-1 как решение и убираем эту скобку. (x+3)(x-2) <= 0 x € [-3; 2] Точка x=-1 входит в этот отрезок. x € [-3; 2]
3) Здесь сначала надо сделать справа 0, а потом уже применять метод интервалов. (x+1)/(x+2) - 3 >= 0 (x+1-3x-6)/(x+2) >= 0 (-2x-5)/(x+2) >= 0 Поменяем знак числителя, при этом поменяется знак неравенства. (2x+5)/(x+2) <= 0 x € [-5/2; -2)
1) После того как отметили точки М(6;-2); N(-3;4) на координатной плоскости и соединили точки М и N, необходимо составить уравнение прямой МN (общий вид уравнения прямой y = kx + b) :
-2 = 6k + b (1)
4 = -3k + b (2)
Решаем данную систему уравнений: 1.)из (2) уравнения выразим b : 4 + 3k = b;
2.) 4 + 3k = b подставим в (1) уравнение : -2 = 6k + 4 + 3k, отсюда
k = -(2/3);
3.) b = 4 + 3*(-2/3) = 4 — 2 = 2
Тогда уравнение прямой МN : y = -(2/3)x + 2. Так как нам надо найти координаты точки пересечения отрезка MN с осью ординат (осью OY), следовательно x = 0. Подставим x = 0 в y = -(2/3)x + 2, получим :
y=-(2/3)*0 + 2 = 2. Тогда точка пересечения отрезка МN с осью ординат (назовём эту точку А) : А(0;2).
2) После того как отметили точки М(-2;2); N(1;4) на координатной плоскости и соединили точки М и N, необходимо составить уравнение прямой МN (общий вид уравнения прямой y = kx + b) :
2 = -2k + b (1)
4 = k + b (2)
Решаем данную систему уравнений: 1.)из (2) уравнения выразим b : 4 - k = b;
2.) 4 — k = b подставим в (1) уравнение : 2 = -2k + 4 - k, отсюда
k = 2/3;
3.) b = 4 - (2/3) = 10/3
Тогда уравнение прямой МN : y = (2/3)x + 10/3. Так как нам надо найти координаты точки пересечения отрезка MN с осью ординат (осью OY), следовательно x = 0. Подставим x = 0 в y = (2/3)x + 10/3, получим :
y=(2/3)*0 + 10/3 = 10/3. Тогда точка пересечения отрезка МN с осью ординат (назовём эту точку А) : А(0;10/3).
ответ: 1) А(0; 2); 2) А(0; 10/3).