Графически неравенство x^2+6x-18< 0 представляет собой ту часть параболы у = x^2+6x-18, которая расположена ниже оси ординат(это ось ох).поэтому находим точки пересечения этой параболы с осью ох - в этих точках значение у = 0: х² + 6х - 18 = 0 квадратное уравнение, решаем относительно x: ищем дискриминант: d=6^2-4*1*(-18)=36-4*(-18)=*18)=)=36+72=108; дискриминант больше 0, уравнение имеет 2 корня: x_1=(√108-6)/(2*1)=√108/2-6/2=(√108/2)-3 ≈ 2.19615; x_2=(-√108-6)/(2*1)=-√108/2-6/2=(-√108/2)-3 ≈ -8.19615.отсюда ответ:
Плоскость, на которой выбрана система координат, называют координатной плоскостью. пусть m — некоторая точка координатной плоскости (рис. 113). проведем через нее прямую ma, перпендикулярную координатной прямой x, и прямую mb, перпендикулярную координатной прямой y. так как точка a имеет координату 6, а точка b — координату -5, то положение точки m определяется парой чисел (6; -5). эту пару чисел называют координатами точки m. число 6 называют абсциссой точки m, а число -5 называют ординатой точки m. координатную прямую x называют осью абсцисс, а координатную прямую y — осью ординат. точку м с абсциссой 6 и ординатой -5 обозначают так: м(6; -5). при этом всегда на первом месте пишут абсциссу точки, а на втором — ее ординату. если переставить координаты местами, то получится другая точка — n (-5; 6), которая показана на рисунке 113. каждой точке м на координатной плоскости соответствует пара чисел: ее абсцисса и ордината. наоборот; каждой паре чисел соответствует одна точка плоскости, для которой эти числа являются координатами. на рисунке 114 показано, как попасть в точку c с координатами (-4; -3): сначала надо пройти по оси x от начала отсчета влево на 4 единицы, а потом — на 3 единицы вниз. в положение точек на земной поверхности тоже определяют двумя числами — координатами: широтой и долготой.
3•(х-4)=18
х-4=18:3
х-4=6
х=6+4
х=10
3•(10-4)=18
18=18
Пошаговое объяснение:
Все правильно