По чертежу (рис. 1) мы замечаем, что AM || CH, но для полного убеждения, составим функции прямых по формуле y = kx + m и решим систему уравнений.
Возьмём две любые точки (желательно брать такие точки, если они есть, чтобы аргумент (х) был равен 0; тогда пропадёт коэффицент k и найти m будет легче) для AM, например, (0; 4) и (-2; 3). Составляем таблицу:
Теперь данные из таблицы подставляем к линейной функции вида
y = kx + m:
4 = k0 + m
4 = m ⇒ y = kx + 4
Теперь, находим коэффицент k:
, на 0 делить нельзя, поэтому берем другие точки
Получаем линейную функцию y = 0,5x + 4
Аналогично действуем для второй прямой
1) Таблица:
2) Подставляем значения в y = kx + m:
-1 = k0 + m
-1 = m ⇒ y = kx - 1
3) Находим k:
Так как прямые параллельны, то k будет одинаковый (можно проверить):
⇒ y = 0,5x - 1
Наконец, составляем систему уравнений
Как видим, x и y обратились в 0, а значит, система не имеет решений и прямые не имеют общих точек.
56065567=50000000+6000000+60000+5000+500+60+7
47027005=40000000+7000000+20000+7000+5
9006028=9000000+6000+28
112070009001=110000000000+2000000000+70000000+9000+1
470320000236=400000000000+7000000000+300000000+20000000+200+30+6
2515310000000=2000000000000+500000000000+10000000000+300000000+10000000
2100000139=2100000000+100+30+9
538001000000=500000000000+3000000000+800000000+1000000