Математическое ожидание случайной величины Х, имеющей гипергеометрическое распределение, и ее дисперсия равны:
ПРИМЕР №1. В урне 2 белых и 3 черных шара. Шары наудачу достают из урны без возвращения до тех пор, пока не появится белый шар. Как только это произойдет, процесс прекращается. Составить таблицу распределения случайной величины X – числа произведенных опытов, найти F(x), P(X ≤ 2), M(X), D(X).·
Решение: Обозначим через А – появление белого шара. Опыт может быть проведен только один раз, если белый шар появится сразу:. Если же в первый раз белый шар не появился, а появился при втором извлечении, то X=2. Вероятность такого события равна . Аналогично: , , . Запишем данные в таблицу:
X 1 2 3 4
P 0,4 0,3 0,2 0,1
НайдемF(x):
Найдем P(X ≤ 2) = P(X = 1 или X = 2) = 0,4 + 0,3 = 0,7
M(X) = 1 · 0,4 + 2 · 0,3 +3 · 0,2 + 4 · 0,1 = 2.
D(X) = (1-2)2 · 0,4 + (2-2)2 · 0,3 +(3-2)2 · 0,2 + (4-2)2 · 0,1 = 1
Пошаговое объяснение:
Обозначим искомые числа за (х) и (у), тогда сумма этих чисел равна:
х+у=120
40% первого числа составляет:
40%*х :100%=0,4*х=0,4х
30% второго числа составляет:
30%*у :100%=0,3*у=0,3у
Сумма этих чисел равна:
0,4х+0,3у=41
Решим два уравнения, которые представляют систему уравнений:
х+у=120
0,4х+0,3у=41
Из первого уравнения найдём значение (х)
х=120-у подставим значение (х) во второе уравнение:
0,4*(120-у) +0,3у=41
48 -0,4у +0,3у=41
-0,1у=41-48
-0,1у=-7
у= -7 : -0,1
у=70 - второе число
х=120-70=50 - первое число
ответ: Искомые числа 50 и 70