Такого прямоугольника нет, например, если умножить 110*111=12210 см кв., если умножить 111*112=12432 см. кв. Число 12345 попадает в этот промежуток площадей, данное значение невозможно получить из натуральных чисел с разницей в единицу..
Доказать это можно так, приняв одну из сторон за Х:
Х(Х+1)=12345
Решаем квадратное уравнение Х^2+Х-12345=0, находим дискриминант
Д=49381 (Корень из данного значения выделить в натуральном выражении невозможно. С округлением - это 222,218. Следовательно, и корни квадр. уравнения не будут натуральными числами.).Можно вычислить корни только с приближением (округлением):
Х1=(-1+222,218)/2= 110,61 или Х2=(-1-222,218)/2=-111,61
80+4(7у-3) > 5(3y+5)-30y
80+21y-12 > 15y+25-30y
68+21y > 25-15y
21y+15y > 25-68
36y > 43
y > 43/36
y > 1 7/36
(1 7/36; ∞)