Пошаговое объяснение:
х= -3
х=3
а=8
а=-8
вот кароче модуль может иметь как минусовое так и обычное значение
По значению тангенса можно найти значение косинуса. Их связывает одно очень важное соотношение:
1 + tg²t = 1 / cos²t
Отсюда выразим квадрат косинуса:
cos²t = 1 / (1 + tg²t)
Теперь подставим значения в данное выражение и найдём квадрат косинуса:
cos²t = 1 / (1 + 49/576) = 1 : 625/576 = 576/625
Следовательно, по квадратному уравнению получаем два возможных значения косинуса:
сos t = 24/25 или cos t = -24/25
Какой косинус выбрать - положительный или отрицательный? По условию значение угла лежит в промежутке от π до 3π/2. Поэтому, угол лежит в 3 четверти, где косинус как мы знаем отрицательный. Поэтому, cos t = -24/25.
Теперь элементарно вычислить например котангенс угла. Получаем по соотношению между тангенсом и котангенсом:
ctg α = 1 / tg α = 1 : 7/24 = 24/7
Синус угла легко найти, зная косинус и например тангенс(всё это мы знаем).
tg α = sin α / cos α
Отсюда
sin α = tg α * cos α = 7/24 * (-24/25) = -7/25
Задача решена.
Решение.
1. Найдем производную функции f(x).
f'(x) = 3x^2 - 4x + 1.
2. Производная функции f(x) существует на всем числовом интервале.
3. Найдем стационарные точки функции f(x). Решим уравнение.
3x^2 - 4x + 1 = 0;
D = 16 - 12 = 4.
Уравнение имеет 2 корня х = 1/3 и х = 1.
4. Функция f(x) имеет 2 критические точки х = 1/3 и х = 1.
5. Исследуем критические точки на максимум и минимум.
Найдем вторую производную функции f(x).
f''(x) = 6x - 4.
f''(1/3) = 6 * 1/3 - 4 = -2 < 0. x = 1/3 - точка максимума.
f''(1) = 6 * 1 - 4 = 2 > 0. х = 1 - точка минимума.
ответ. Функция имеет 2 критические точки. х = 1/3 - точка максимума, х = 1 - точка минимума.
|x| = 3 при х равном -3 и +3
|а| = 8 при а равно -8 и +8