В Ноттингеме шериф проводит состязания по стрельбе из лука, чтобы выманить Робин Гуда. Соревнования проходят в два тура. Приз, золотую стрелу с серебряным наконечником, получит тот, кто наберёт больше всех очков в сумме, причём если таких по итогам двух туров будет несколько, приз за это будет только один, а так же те, кто наберёт больше за первый тур, тоже получат призы. Состязающиеся имеют каждый свой номер.
Обозначим
первое натуральное число за (а), тогда согласно условия задачи,
второе последовательное натуральное число равно: (а+1);
третье последовательное натуральное число равно: (а+1+1)=(а+2)
Произведение второго и третьего числа составляет:
(а+1)*(а+2)=a^2+a+2a+2=a^2+3a+2
а так как оно больше квадрата первого числа на 50, составим уравнение:
а^2+50=a^2+3a+2
a^2+3a+2-a^2-50=0
3a-48=0
3a=48
а=48:3
а=16 - первое натуральное число
а+1=16+1=17 - второе натуральное число
а+2=16+2=18 - третье натуральное число
Проверка:
16^2+50=17*18
256+50=306
306=306 что и соответствует условию задачи