Чертеж беру ваш.
1) Т.к. ABCD - параллелограмм, то его противолежащие стороны параллельны и равны, т.е. АВ||EF, AB=EF, АE||BF, AE=BF.
2) Т.к. DCEF - параллелограмм, то его противолежащие стороны параллельны и равны, т.е. DC||EF, DC=EF, DE||CF, DE=CF.
3) По доказанному выше AB||EF||DC и AB=EF=DC ⇒ по признаку (равенство и параллельность одной пары противолежащих сторон четырехугольника) ABCD является параллелограммом.
4) По свойству диагоналей параллелограмма ABCD имеем: AE=EC и DE=EB. ⇒ EC=AE=BF и EB=DE=CF. Отсюда по признаку (равенство пар противолежащих сторон четырехугольника) EBFC является параллелограммом.
Доказано.
Раскладываем квадраты синусов через косинусы двойных углов:
(1-cos2x + 1 - cos2y)/2 = 1/2
cos2x + cos2y = 1
используем формулу сложения косинусов через полусумму и полуразность:
cos2x + cos2y = 2*cos((2x + 2y)/2)*cos((2x - 2y)/2) = 2cos(x+y)cos(x-y)
Подставляем значение второго уравнения:
cos(x-y) = cos(4П/3)= -1/2
2cos(x+y)*(-1/2) = - cos (x+y) = 1
cos(x+y)= -1
x+y = П; 3П; ... => y = П - x
x-y = 4П/3
x - П + x = 4П/3
2x = 7П/3
х = 7П/6; 19П/6
y = x - 4П/3 = 7П/6 - 8П/6 = -1П/6 = 11П/6
Пошаговое объяснение: